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1 Proof of Proposition 1 and discussion on mandatory
universal reduction

Below we restate Proposition 1 from Section 3.1 and present a proof.

Proposition 1. Given a false QBF & = Q1v1 .. Qrvg. C1 A..ANC; AN..ANC,y, over
the set V' of variables. Let &* = Q1v1 .. Qrvg. C1 A .. /\C; A..NC,, where clause
Cr = (C;U{lit(v)}) for some v € V.. If ®* is false, then the shortest Q-resolution
proof for @ is at least as large as that for @.

Proof. Consider the resolution step C' = resolve((p, ¢, C1), p, (B, C2)) = (¢, C1, Cs)
that is part of some Q-resolution proof II. Observe that regardless of the quan-
tification of the variables, eliminating the literal g from the left clause updates
the resolution to C = resolve((p, C1),p, (P, C2)) = (Cy,Cs). Hence it decreases or
leaves unchanged the number of literals in C, and does not affect any resolutions
that precede C' in II. Similarly, eliminating the literal p from the left clause
allows us to directly assign C' = (g, C1), hence decreasing or leaving unchanged
the number of literals in C', and decreasing the number of resolutions preceding
C in IT by one.

Now consider the clause C' = reduce((C1,p, ¢)) = (C1,p) derived from univer-
sal reduction of variable ¢q. Elimination of p results in a smaller clause C' = C}.
Elimination of ¢ leaves C' unchanged. Neither of the two elimination cases affects
the number of resolutions preceding C in II.

We refer to the above construction as rebuilding rules applied to the given
Q-resolution step whenever an elimination occurs. Rebuilding rules can be easily
extended to a simultaneous elimination of several variables.

Consequently, if IT* is the shortest Q-resolution proof for &*, then after
the literal lit(v) is eliminated from the clause C7, we can apply the described
rebuilding rules to II* iteratively, eventually leading to a new Q-resolution proof
that is at most as long as IT*. Hence there exists a Q-refutation proof for @ that
is at most as long as IT*. a

Please note that the proof of Proposition[I]is not restricted to the resolves-rule
only. Therefore it can be extended to QU-resolution, LQ-resolution, LQU-resolution,
and LQU+-resolution as the following proposition states.



Proposition 4. Given two false QBFs & and 9* as described in Proposition[]]
let IT and IT* be their respective shortest QU-refutations (LQ-refutations, LQU-
refutations, or LQU+-refutations). Then |II*| > |II|.

For all the Q-resolution based proof systems in our paper (i.e. {Q, QU, LQ, LQU,
LQU-+}-resolution), we have followed the assumption that universal reduction is
performed whenever possible. If one allows postponing the reduction arbitrarily
(as in the definition of universal reduction in reference [19]), it will generalize the
aforementioned proof systems and allow a larger number of sound refutations.
In the sequel we call a refutation where the reduction of at least one universal
variable has been postponed a postponed refutation. Postponing, however, cannot
lead to shorter refutations in terms of the number of resolutions for any of the
{Q, QU, LQ, LQU, LQU+}-resolution proof systems, as the following corollary
from Propositions [I] and [ states.

Corollary 3. Given a false QBF &, let IT be its shortest QU-refutation ({Q, LQ,
LQU,LQU+}-refutation), and let IT* be its shortest postponed QU-refutation ({Q,
LQ,LQU,LQU+}-refutation). Then |IT*| > |II|.

Proof. The corollary directly follows from Propositions [I] and [] once we apply
the rebuilding rules to the clauses in IT* where postponing occurs. ad

In the light of Corollary [3], Theorem 1 holds for postponed QU-refutations as
well.

2 Proofs for invariants in Theorem 2

In the following we prove the invariants used in the proof of Theorem 2.

Proposition 5. Given any LQ-resolution proof II of a formula KBKF[t], any
clause C € II has at most one positive existential literal.

Proof. First, the statement holds for any clause in the original clause set of
KBKF[t]. Now consider any resolution step C = resolve((C1,p),p, (C2,P)) =
(C1, C3). If the statement holds for the clauses (Cy,p) and (Cs,p), then C; has no
positive existential literals, and Cs has at most one. Thus C' also has at most one
positive existential literal. By induction, any clause C' has at most one positive
existential literal. a

Lemma 1 (Invariant 1). Given any LQ-resolution proof IT of a formula KBKFJ[t],
the following holds for any clause C' € II. For all i € [1..t], if f; € C then
lit(z;) € C, and if f; € C then for any j € [i..t] either f; € C orlit(x;) € C.

Proof. First, observe that the invariant holds for any clause in the original clause
set of KBKF[t]. Let C be a clause derived from C’ by exactly one derivation step,
such that f; € C and f; € C'. If lit(z;) € C’ then it must hold that lit(x;) € C,
because resolution on universal variables is forbidden and the presence of f;



disallows the universal reduction of lit(x;) in both C’ and C. Thus by induction
it holds for any clause C that if f; € C then lit(z;) € C.

Now let C be a clause derived from C’ by exactly one derivation step, such
that f, € C and f; € C'. If lit(z;) € C’ for some j € [i..t], then lit(x;) € C for
the same reasons as above. If f; € C’ for some j € [i..t], then either lit(z;) € C
(in the case where f; is the pivot variable, i.e., C' = resolve(C", f;,C") with
fi;lit(z;) € C" by the above discussion), or f; € C' (in any other case). Thus by
induction it holds for any clause C that if f, € C then for any j € [i..t] either

f; € Corlit(z)) € C. O

Lemma 2 (Invariant 2). Given any LQ-resolution proof IT of a formula KBKF[t]
the following holds for any clause C' € II. For all i € [1..t], if lit(d;) € C or
lit(e;) € C then f; & C for any j € [1..4].

Proof. First, the invariant holds for any clause in the original clause set of KBKFJt].
Now let C' = resolve(C1, p, C2), where lit(e;) € C or lit(d;) € C, and lit(e;) € Cy
or lit(d;) € Cy for some i € [1..t].

If lit(ex) € Co or lit(dg) € Co for some k € [1..t] then by inductive hypothesis
it holds that for all j € [1..t] f; & C1 and f; & Cs. Therefore, by the definition of
resolve, it holds that for all j € [1..t] f; & C.

Else, lit(e;) ¢ Cy and lit(d;) ¢ Cso, thus we are left with p = fi for some
k € [1..t]. By inductive hypothesis, f; ¢ C; for all j € [1..t], therefore f, € C;
and fr € Cs. By Propositionit holds that f; & C5 for all j € [1..t] with j # k.
Thus for all j € [1..t] it holds that f; ¢ C.

Therefore, by induction it holds for any clause C' and for all ¢ € [1..¢] that if
lit(d;) € C or lit(e;) € C then f; ¢ C for any j € [1..t]. 0

Lemma 3 (Invariant 3). Given any LQ-resolution proof IT of a formula KBKF[t]
the following holds for any clause C' € II. For all i € [1..t] it holds that if
lit(d;) € C orlit(e;) € C then for any j € [1..i — 1] either f; € C orlit(x;) € C.

Proof. First, note that the invariant holds for any clause of the original clause
set of KBKF[t]. Now, let C be a clause retrieved from C’ by one derivation step,
such that lit(e;) € C’ or lit(d;) € €', and lit(e;) € C or lit(d;) € C. If for some
J € [1..i — 1] it holds that lit(z;) € C”, then lit(z;) € C for the same reasons as
in the proof of Invariant 1 (recall that lev(e;) = lev(d;) > lev(z;) for j € [1..i — 1],
therefore disallowing universal reduction of lit(z;) in the presence of either lit(e;)
or lit(d;)). If f; € C’ for some j € [1..i — 1] , then either lit(z;) € C (in the case
where f; is the pivot variable, i.e., C' = resolve(C’, f;, C") with {f;, lit(z;)} € C”

by Invariant 1), or f; € C (in any other case).
Therefore by induction it holds for any clause C' and for all ¢ € [1..¢] that if
lit(d;) € C or lit(e;) € C then for any j € [1..i — 1] either f; € C or lit(z;) € C.
O
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