QBF Resolution Systems and their Proof Complexities

Complementary material

Valeriy Balabanov¹, Magdalena Widl², and Jie-Hong R. Jiang¹

¹National Taiwan University, ²Vienna University of Technology {balabasik@gmail.com, widl@kr.tuwien.ac.at, jhjiang@ntu.edu.tw}

1 Proof of Proposition 1 and discussion on mandatory universal reduction

Below we restate Proposition 1 from Section 3.1 and present a proof.

Proposition 1. Given a false $QBF \Phi = Q_1v_1 ... Q_kv_k$. $C_1 \wedge ... \wedge C_j \wedge ... \wedge C_n$ over the set V of variables. Let $\Phi^* = Q_1v_1 ... Q_kv_k$. $C_1 \wedge ... \wedge C_j^* \wedge ... \wedge C_n$, where clause $C_j^* = (C_j \cup \{\text{lit}(v)\})$ for some $v \in V$. If Φ^* is false, then the shortest Q-resolution proof for Φ^* is at least as large as that for Φ .

Proof. Consider the resolution step $C = \mathsf{resolve}((p,q,C_1),p,(\overline{p},C_2)) = (q,C_1,C_2)$ that is part of some Q-resolution proof Π . Observe that regardless of the quantification of the variables, eliminating the literal q from the left clause updates the resolution to $C = \mathsf{resolve}((p,C_1),p,(\overline{p},C_2)) = (C_1,C_2)$. Hence it decreases or leaves unchanged the number of literals in C, and does not affect any resolutions that precede C in Π . Similarly, eliminating the literal p from the left clause allows us to directly assign $C = (q,C_1)$, hence decreasing or leaving unchanged the number of literals in C, and decreasing the number of resolutions preceding C in Π by one.

Now consider the clause $C = \mathsf{reduce}((C_1, p, q)) = (C_1, p)$ derived from universal reduction of variable q. Elimination of p results in a smaller clause $C = C_1$. Elimination of q leaves C unchanged. Neither of the two elimination cases affects the number of resolutions preceding C in Π .

We refer to the above construction as *rebuilding rules* applied to the given Q-resolution step whenever an elimination occurs. Rebuilding rules can be easily extended to a simultaneous elimination of several variables.

Consequently, if Π^* is the shortest Q-resolution proof for Φ^* , then after the literal lit(v) is eliminated from the clause C_j^* , we can apply the described rebuilding rules to Π^* iteratively, eventually leading to a new Q-resolution proof that is at most as long as Π^* . Hence there exists a Q-refutation proof for Φ that is at most as long as Π^* .

Please note that the proof of Proposition 1 is not restricted to the $\mathsf{resolve}_\exists$ -rule only. Therefore it can be extended to QU -resolution, LQ -resolution, LQU -resolution, and LQU +-resolution as the following proposition states.

Proposition 4. Given two false QBFs Φ and Φ^* as described in Proposition 1, let Π and Π^* be their respective shortest QU-refutations (LQ-refutations, LQU-refutations, or LQU+-refutations). Then $|\Pi^*| \ge |\Pi|$.

For all the Q-resolution based proof systems in our paper (i.e. $\{Q, QU, LQ, LQU, LQU, LQU+\}$ -resolution), we have followed the assumption that universal reduction is performed whenever possible. If one allows postponing the reduction arbitrarily (as in the definition of universal reduction in reference [19]), it will generalize the aforementioned proof systems and allow a larger number of sound refutations. In the sequel we call a refutation where the reduction of at least one universal variable has been postponed a postponed refutation. Postponing, however, cannot lead to shorter refutations in terms of the number of resolutions for any of the $\{Q, QU, LQ, LQU, LQU+\}$ -resolution proof systems, as the following corollary from Propositions 1 and 4 states.

Corollary 3. Given a false QBF Φ , let Π be its shortest QU-refutation ({Q, LQ, LQU,LQU+}-refutation), and let Π^* be its shortest postponed QU-refutation ({Q, LQ,LQU,LQU+}-refutation). Then $|\Pi^*| \ge |\Pi|$.

Proof. The corollary directly follows from Propositions 1 and 4 once we apply the rebuilding rules to the clauses in Π^* where postponing occurs.

In the light of Corollary 3, Theorem 1 holds for postponed QU-refutations as well.

2 Proofs for invariants in Theorem 2

In the following we prove the invariants used in the proof of Theorem 2.

Proposition 5. Given any LQ-resolution proof Π of a formula KBKF[t], any clause $C \in \Pi$ has at most one positive existential literal.

Proof. First, the statement holds for any clause in the original clause set of KBKF[t]. Now consider any resolution step $C = \text{resolve}((C_1, p), p, (C_2, \overline{p})) = (C_1, C_2)$. If the statement holds for the clauses (C_1, p) and (C_2, \overline{p}) , then C_1 has no positive existential literals, and C_2 has at most one. Thus C also has at most one positive existential literal. By induction, any clause C has at most one positive existential literal.

Lemma 1 (Invariant 1). Given any LQ-resolution proof Π of a formula KBKF[t], the following holds for any clause $C \in \Pi$. For all $i \in [1..t]$, if $f_i \in C$ then $\operatorname{lit}(x_i) \in C$, and if $\overline{f}_i \in C$ then for any $j \in [i..t]$ either $\overline{f}_j \in C$ or $\operatorname{lit}(x_j) \in C$.

Proof. First, observe that the invariant holds for any clause in the original clause set of KBKF[t]. Let C be a clause derived from C' by exactly one derivation step, such that $f_i \in C$ and $f_i \in C'$. If $lit(x_i) \in C'$ then it must hold that $lit(x_i) \in C$, because resolution on universal variables is forbidden and the presence of f_i

disallows the universal reduction of $lit(x_i)$ in both C' and C. Thus by induction it holds for any clause C that if $f_i \in C$ then $lit(x_i) \in C$.

Now let C be a clause derived from C' by exactly one derivation step, such that $\overline{f}_i \in C$ and $\overline{f}_i \in C'$. If $\operatorname{lit}(x_j) \in C'$ for some $j \in [i..t]$, then $\operatorname{lit}(x_j) \in C$ for the same reasons as above. If $\overline{f}_j \in C'$ for some $j \in [i..t]$, then either $\operatorname{lit}(x_j) \in C$ (in the case where f_j is the pivot variable, i.e., $C = \operatorname{resolve}(C', f_j, C'')$ with $f_j, \operatorname{lit}(x_j) \in C''$ by the above discussion), or $\overline{f}_j \in C$ (in any other case). Thus by induction it holds for any clause C that if $\overline{f}_i \in C$ then for any $j \in [i..t]$ either $\overline{f}_j \in C$ or $\operatorname{lit}(x_j) \in C$.

Lemma 2 (Invariant 2). Given any LQ-resolution proof Π of a formula KBKF[t] the following holds for any clause $C \in \Pi$. For all $i \in [1..t]$, if $lit(d_i) \in C$ or $lit(e_i) \in C$ then $f_j \notin C$ for any $j \in [1..t]$.

Proof. First, the invariant holds for any clause in the original clause set of KBKF[t]. Now let $C = \mathsf{resolve}(C_1, p, C_2)$, where $\mathsf{lit}(e_i) \in C$ or $\mathsf{lit}(d_i) \in C$, and $\mathsf{lit}(e_i) \in C_1$ or $\mathsf{lit}(d_i) \in C_1$ for some $i \in [1..t]$.

If $\operatorname{lit}(e_k) \in C_2$ or $\operatorname{lit}(d_k) \in C_2$ for some $k \in [1..t]$ then by inductive hypothesis it holds that for all $j \in [1..t]$ $f_j \notin C_1$ and $f_j \notin C_2$. Therefore, by the definition of resolve, it holds that for all $j \in [1..t]$ $f_j \notin C$.

Else, $\text{lit}(e_i) \notin C_2$ and $\text{lit}(d_i) \notin C_2$, thus we are left with $p = f_k$ for some $k \in [1..t]$. By inductive hypothesis, $f_j \notin C_1$ for all $j \in [1..t]$, therefore $\overline{f}_k \in C_1$ and $f_k \in C_2$. By Proposition 5 it holds that $f_j \notin C_2$ for all $j \in [1..t]$ with $j \neq k$. Thus for all $j \in [1..t]$ it holds that $f_j \notin C$.

Therefore, by induction it holds for any clause C and for all $i \in [1..t]$ that if $lit(d_i) \in C$ or $lit(e_i) \in C$ then $f_j \notin C$ for any $j \in [1..t]$.

Lemma 3 (Invariant 3). Given any LQ-resolution proof Π of a formula KBKF[t] the following holds for any clause $C \in \Pi$. For all $i \in [1..t]$ it holds that if $\operatorname{lit}(d_i) \in C$ or $\operatorname{lit}(e_i) \in C$ then for any $j \in [1..i-1]$ either $\overline{f}_j \in C$ or $\operatorname{lit}(x_j) \in C$.

Proof. First, note that the invariant holds for any clause of the original clause set of KBKF[t]. Now, let C be a clause retrieved from C' by one derivation step, such that $\operatorname{lit}(e_i) \in C'$ or $\operatorname{lit}(d_i) \in C'$, and $\operatorname{lit}(e_i) \in C$ or $\operatorname{lit}(d_i) \in C$. If for some $j \in [1..i-1]$ it holds that $\operatorname{lit}(x_j) \in C'$, then $\operatorname{lit}(x_j) \in C$ for the same reasons as in the proof of Invariant 1 (recall that $\operatorname{lev}(e_i) = \operatorname{lev}(d_i) > \operatorname{lev}(x_j)$ for $j \in [1..i-1]$, therefore disallowing universal reduction of $\operatorname{lit}(x_j)$ in the presence of either $\operatorname{lit}(e_i)$ or $\operatorname{lit}(d_i)$). If $\overline{f}_j \in C'$ for some $j \in [1..i-1]$, then either $\operatorname{lit}(x_j) \in C$ (in the case where f_j is the pivot variable, i.e., $C = \operatorname{resolve}(C', f_j, C'')$ with $\{f_j, \operatorname{lit}(x_j)\} \in C''$ by Invariant 1), or $\overline{f}_j \in C$ (in any other case).

Therefore by induction it holds for any clause C and for all $i \in [1..t]$ that if $lit(d_i) \in C$ or $lit(e_i) \in C$ then for any $j \in [1..i-1]$ either $\overline{f}_j \in C$ or $lit(x_j) \in C$.

L