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1 Proof of Proposition 1 and discussion on mandatory
universal reduction

Below we restate Proposition 1 from Section 3.1 and present a proof.

Proposition 1. Given a false QBF Φ = Q1v1 .. Qkvk. C1∧ ..∧Cj ∧ ..∧Cn over
the set V of variables. Let Φ∗ = Q1v1 .. Qkvk. C1 ∧ ..∧C∗j ∧ ..∧Cn, where clause
C∗j = (Cj ∪{lit(v)}) for some v ∈ V . If Φ∗ is false, then the shortest Q-resolution
proof for Φ∗ is at least as large as that for Φ.

Proof. Consider the resolution step C = resolve((p, q, C1), p, (p, C2)) = (q, C1, C2)
that is part of some Q-resolution proof Π. Observe that regardless of the quan-
tification of the variables, eliminating the literal q from the left clause updates
the resolution to C = resolve((p, C1), p, (p, C2)) = (C1, C2). Hence it decreases or
leaves unchanged the number of literals in C, and does not affect any resolutions
that precede C in Π. Similarly, eliminating the literal p from the left clause
allows us to directly assign C = (q, C1), hence decreasing or leaving unchanged
the number of literals in C, and decreasing the number of resolutions preceding
C in Π by one.

Now consider the clause C = reduce((C1, p, q)) = (C1, p) derived from univer-
sal reduction of variable q. Elimination of p results in a smaller clause C = C1.
Elimination of q leaves C unchanged. Neither of the two elimination cases affects
the number of resolutions preceding C in Π.

We refer to the above construction as rebuilding rules applied to the given
Q-resolution step whenever an elimination occurs. Rebuilding rules can be easily
extended to a simultaneous elimination of several variables.

Consequently, if Π∗ is the shortest Q-resolution proof for Φ∗, then after
the literal lit(v) is eliminated from the clause C∗j , we can apply the described
rebuilding rules to Π∗ iteratively, eventually leading to a new Q-resolution proof
that is at most as long as Π∗. Hence there exists a Q-refutation proof for Φ that
is at most as long as Π∗. ut

Please note that the proof of Proposition 1 is not restricted to the resolve∃-rule
only. Therefore it can be extended to QU-resolution, LQ-resolution, LQU-resolution,
and LQU+-resolution as the following proposition states.



Proposition 4. Given two false QBFs Φ and Φ∗ as described in Proposition 1,
let Π and Π∗ be their respective shortest QU-refutations (LQ-refutations, LQU-
refutations, or LQU+-refutations). Then |Π∗| ≥ |Π|.

For all the Q-resolution based proof systems in our paper (i.e. {Q, QU, LQ, LQU,
LQU+}-resolution), we have followed the assumption that universal reduction is
performed whenever possible. If one allows postponing the reduction arbitrarily
(as in the definition of universal reduction in reference [19]), it will generalize the
aforementioned proof systems and allow a larger number of sound refutations.
In the sequel we call a refutation where the reduction of at least one universal
variable has been postponed a postponed refutation. Postponing, however, cannot
lead to shorter refutations in terms of the number of resolutions for any of the
{Q, QU, LQ, LQU, LQU+}-resolution proof systems, as the following corollary
from Propositions 1 and 4 states.

Corollary 3. Given a false QBF Φ, let Π be its shortest QU-refutation ({Q, LQ,
LQU,LQU+}-refutation), and let Π∗ be its shortest postponed QU-refutation ({Q,
LQ,LQU,LQU+}-refutation). Then |Π∗| ≥ |Π|.

Proof. The corollary directly follows from Propositions 1 and 4 once we apply
the rebuilding rules to the clauses in Π∗ where postponing occurs. ut

In the light of Corollary 3, Theorem 1 holds for postponed QU-refutations as
well.

2 Proofs for invariants in Theorem 2

In the following we prove the invariants used in the proof of Theorem 2.

Proposition 5. Given any LQ-resolution proof Π of a formula KBKF[t], any
clause C ∈ Π has at most one positive existential literal.

Proof. First, the statement holds for any clause in the original clause set of
KBKF[t]. Now consider any resolution step C = resolve((C1, p), p, (C2, p)) =
(C1, C2). If the statement holds for the clauses (C1, p) and (C2, p), then C1 has no
positive existential literals, and C2 has at most one. Thus C also has at most one
positive existential literal. By induction, any clause C has at most one positive
existential literal. ut

Lemma 1 (Invariant 1). Given any LQ-resolution proof Π of a formula KBKF[t],
the following holds for any clause C ∈ Π. For all i ∈ [1..t], if fi ∈ C then
lit(xi) ∈ C, and if f i ∈ C then for any j ∈ [i..t] either f j ∈ C or lit(xj) ∈ C.

Proof. First, observe that the invariant holds for any clause in the original clause
set of KBKF[t]. Let C be a clause derived from C ′ by exactly one derivation step,
such that fi ∈ C and fi ∈ C ′. If lit(xi) ∈ C ′ then it must hold that lit(xi) ∈ C,
because resolution on universal variables is forbidden and the presence of fi
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disallows the universal reduction of lit(xi) in both C ′ and C. Thus by induction
it holds for any clause C that if fi ∈ C then lit(xi) ∈ C.

Now let C be a clause derived from C ′ by exactly one derivation step, such
that f i ∈ C and f i ∈ C ′. If lit(xj) ∈ C ′ for some j ∈ [i..t], then lit(xj) ∈ C for
the same reasons as above. If f j ∈ C ′ for some j ∈ [i..t], then either lit(xj) ∈ C
(in the case where fj is the pivot variable, i.e., C = resolve(C ′, fj , C

′′) with
fj , lit(xj) ∈ C ′′ by the above discussion), or f j ∈ C (in any other case). Thus by

induction it holds for any clause C that if f i ∈ C then for any j ∈ [i..t] either
f j ∈ C or lit(xj) ∈ C. ut

Lemma 2 (Invariant 2). Given any LQ-resolution proof Π of a formula KBKF[t]

the following holds for any clause C ∈ Π. For all i ∈ [1..t], if lit(di) ∈ C or
lit(ei) ∈ C then fj 6∈ C for any j ∈ [1..t].

Proof. First, the invariant holds for any clause in the original clause set of KBKF[t].
Now let C = resolve(C1, p, C2), where lit(ei) ∈ C or lit(di) ∈ C, and lit(ei) ∈ C1

or lit(di) ∈ C1 for some i ∈ [1..t].
If lit(ek) ∈ C2 or lit(dk) ∈ C2 for some k ∈ [1..t] then by inductive hypothesis

it holds that for all j ∈ [1..t] fj 6∈ C1 and fj 6∈ C2. Therefore, by the definition of
resolve, it holds that for all j ∈ [1..t] fj 6∈ C.

Else, lit(ei) 6∈ C2 and lit(di) 6∈ C2, thus we are left with p = fk for some
k ∈ [1..t]. By inductive hypothesis, fj 6∈ C1 for all j ∈ [1..t], therefore fk ∈ C1

and fk ∈ C2. By Proposition 5 it holds that fj 6∈ C2 for all j ∈ [1..t] with j 6= k.
Thus for all j ∈ [1..t] it holds that fj 6∈ C.

Therefore, by induction it holds for any clause C and for all i ∈ [1..t] that if
lit(di) ∈ C or lit(ei) ∈ C then fj 6∈ C for any j ∈ [1..t]. ut

Lemma 3 (Invariant 3). Given any LQ-resolution proof Π of a formula KBKF[t]

the following holds for any clause C ∈ Π. For all i ∈ [1..t] it holds that if
lit(di) ∈ C or lit(ei) ∈ C then for any j ∈ [1..i− 1] either f j ∈ C or lit(xj) ∈ C.

Proof. First, note that the invariant holds for any clause of the original clause
set of KBKF[t]. Now, let C be a clause retrieved from C ′ by one derivation step,
such that lit(ei) ∈ C ′ or lit(di) ∈ C ′, and lit(ei) ∈ C or lit(di) ∈ C. If for some
j ∈ [1..i− 1] it holds that lit(xj) ∈ C ′, then lit(xj) ∈ C for the same reasons as
in the proof of Invariant 1 (recall that lev(ei) = lev(di) > lev(xj) for j ∈ [1..i− 1],
therefore disallowing universal reduction of lit(xj) in the presence of either lit(ei)
or lit(di)). If f j ∈ C ′ for some j ∈ [1..i− 1] , then either lit(xj) ∈ C (in the case
where fj is the pivot variable, i.e., C = resolve(C ′, fj , C

′′) with {fj , lit(xj)} ∈ C ′′
by Invariant 1), or f j ∈ C (in any other case).

Therefore by induction it holds for any clause C and for all i ∈ [1..t] that if
lit(di) ∈ C or lit(ei) ∈ C then for any j ∈ [1..i− 1] either f j ∈ C or lit(xj) ∈ C.

ut
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