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ABSTRACT

Break scheduling problems arise in working areas where breaks are indispensable
due to the nature of the tasks to be performed, e.g. in air traffic control, supervision
or assembly lines. We regard such a problem, denoted Bsp, originating in the area of
supervision personnel. The objective is to assign breaks to an existing shiftplan such
that various constraints reflecting legal demands or ergonomic criteria are satisfied
and staffing requirement violations are minimised.

We prove NP-completeness of this problem when all possible break patterns are
given explicitly in the input.

To solve Bsp, we propose variations of a memetic algorithm. A memetic algorithm
combines genetic operators such as selection, crossover and mutation with local
improvement techniques. We suggest two different memetic representations of
Bsr and three different memetic algorithms built upon these representations. The
algorithms differ in their genetic operators and memetic representation, but include
the same local search heuristic. We propose three different neighbourhoods the local
search can be based upon. Additionally, we evaluate the impact of a tabu list within
one of the algorithms, and within another the impact of a penalty system that tries
to detect local optima.

Our approaches are influenced by various parameters, for which we experimen-
tally evaluate different settings. The impact of each parameter is assessed with
statistical methods. We compare the three algorithms, each with the best parameter
setting according to the evaluation, to state of the art results on a set of publicly
available instances. 20 instances were drawn from real life scenarios and 10 ran-
domly generated. One of our algorithms returns improved results on 28 out of the
30 benchmark instances. To the best of our knowledge, our improved results for the
real life instances constitute new upper bounds.






ZUSAMMENFASSUNG

Pauseneinteilungsprobleme entstehen in Arbeitsbereichen, in welchen regelméfiige
Pausen unabdingbar sind. Dazu zihlen Flugsicherung, Uberwachungsaufgaben oder
Flielbandarbeit. Wir betrachten ein solches Problem, abgekiirzt Bsr fiir die englische
Bezeichnung “Break Scheduling Problem”, aus dem Uberwachungsbereich. Das Ziel
ist es, Pausen in einen gegebenen Schichtplan unter Beriicksichtigung verschiedener
rechtlicher und ergonomischer Kriterien so einzuteilen, dass Abweichungen vom
gegebenen Personalbedarf minimiert werden.

Wir zeigen, dass Bsp NP-vollstiandig ist, wenn eine fixe Menge an Pausenmustern
Teil des Inputs ist.

Zur Optimierung des Bsr entwickeln wir verschiedene memetische Algorithmen.
Ein memetischer Algorithmus kombiniert genetische Operatoren wie Selektion,
Kreuzung und Mutation mit lokalen Verbesserungstechniken. Wir prasentieren zwei
verschiedene memetische Darstellungen des Bsr sowie, darauf aufbauend, drei
verschiedene neuartige memetische Algorithmen. Die Algorithmen unterscheiden
sich durch ihre genetischen Operatoren und die memetische Darstellung, verwen-
den aber dieselbe lokale Suche als Verbesserungstechnik. Fiir die lokale Suche
prasentieren wir drei verschiedene Nachbarschaften, die unterschiedlich kombiniert
werden kdnnen. Wir evaluieren fiir einen der Algorithmen den Einfluss einer in
den Suchprozess integrierten Tabu Liste, sowie fiir einen anderen Algorithmus den
Einfluss der Vergabe von Strafpunkten zur Vermeidung lokaler Optima.

Der Verlauf dieser metaheuristischen Ansédtze wird von mehreren Parametern bee-
influsst, fiir welche wir verschiedene Werte experimentell evaluieren. Die Bedeutung
jedes Parameters wird mithilfe statistischer Methoden beurteilt.

Wir vergleichen unsere Algorithmen, jeweils unter der besten ermittelten Parame-
terbelegung, mit Resultaten aus der Literatur auf 6ffentlich verfiigbaren Instanzen.
20 Instanzen stammen aus Szenarien der Praxis und 10 sind zufillig generiert. Unser
bester Algorithmus findet bessere Losungen fiir 28 von 30 Instanzen. Nach unserem
Wissen stellen unsere verbesserten Resultate fiir die Instanzen aus der Praxis neue
obere Schranken dar.

11






PUBLICATIONS

Some results of this thesis have appeared previously in the following publication:

Nysret Musliu, Werner Schafhauser and Magdalena Widl: A Memetic Algorithm for a
Break Scheduling Problem. The 8th Metaheuristic International Conference (MIC 2009),
Hamburg, Germany, July 13-16, 2009.

13






ACKNOWLEDGMENTS

I hereby express my gratitude and sincere appreciation to my advisor Nysret
Musliu, whose expertise, support, encouragement and patience were invaluable
for the progress of this work. I thank my co-advisor Werner Schafhauser for his
assistance in many areas, be it writing of a publication, algorithmic questions or
implementation issues. I also really enjoyed his particular kind of humour.

I thank the DBAI group of the Institute of Information Systems for providing me
with a workstation, a quiet room, powerful servers and a coffee machine. A special
reference goes to the group’s system administrator Toni Pisjak for his technical
support and never-failing backup system.

During more than one year working within this group, I enjoyed the company and
intellectual input of many colleagues who in one way or another have influenced
this work. In this context I particularly thank Andreas Pfandler, Emanuel Sallinger
and Stefan Riimmele for their advice in complexity theory.

I am grateful to my parents and grandmothers for providing me with good
education, encouragement and security during the past 26 years. I particularly thank
my father for his interest and assistance regarding various mathematical questions
that emerged during my studies.

Last but not least, muchisimas gracias go to my partner José for sharing with me
both moments of joy and moments of difficulties.

15






CONTENTS

1 INTRODUCTION 21

1.1
1.2
1.3

2 THE
2.1
2.2

2.3

Objectives 23

Results 23

Organisation 24

BREAK SCHEDULING PROBLEM 25
Problem Statement 25

Complexity 28

Related Work 31

2.3.1  Shift scheduling with breaks 32
2.3.2 Break scheduling 33

3 MEMETICS 35

3.1 Concept and Terminology 35
3.2 From Memetics to Memetic Algorithms 37
4 SOLVING THE BREAK SCHEDULING PROBLEM 39
4.1 Representations and Definitions 40
4.2 Break Patterns 43
4.3 Initialisation 45
4.4 Neighbourhoods 46
4.4.1 Single Assignment 46
4.4.2 Double Assignment 47
4.4.3 Shift Assignment 47
4.5 Local Search 48
4.6 MAR1 — Memetic Algorithm with Representation 1

4.7

4.8

4.6.1  Selection 49

4.6.2  Crossover and Mutation 49

4.6.3 Local Search 52

MARz2 - Memetic Algorithm with Representation 2
4.7.1  Crossover and Mutation 54

4.7.2 Selection 54

4.7.3 Local Search with Tabu List 54

MAPS — Memetic Algorithm with Penalty System

48

52

55

17



18

CONTENTS

4.8.1
4.8.2
4.8.3
4.8.4

Penalty System 55

Selection and Interaction 56
Mutation and Local Search 56
Penalty Update 58

5 EMPIRICAL PARAMETER EVALUATION 59
5.1 Evaluation MAR1 59
5.2 Evaluation MAR2 and MAPS 63

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7

Experimental design 63
Instances 63
Parameters 64

Testing environment 64
Evaluation method 65
Evaluation of MAR2 68
Evaluation MAPS 72

5.3 Comparison of Results 76

6 CONCLUSIONS AND FUTURE WORK 81



LIST OF FIGURES

Figure 1.1 Shiftplan with different shifts and breaktimes 22

Figure 2.1 A sample instance of Bsp with solution and explanations 27
Figure 2.2 Solution for Bsp” instance reduced from X3C instance 31
Figure 4.1 Memetic Representation 1 40

Figure 4.2 Memetic Representation 2 43

Figure 4.3 7 possible break patterns for length |S| =74 44

Figure 4.4 Computation of break patterns 45

Figure 4.5 Single assignment moves 46

Figure 4.6 Double assignment moves 47

Figure 4.7 Shift assignment moves 48

Figure 4.8 Simple Crossover 51

Figure 4.9 Smart Crossover 52

Figure 4.10 Interaction operator 57

LIST OF TABLES

Table 4.1 Sizes of D’ for different shift lengths 44

Table 5.1 MAR1: Population size 60

Table 5.2 MAR1: Selection pressure 60

Table 5.3 MART1: Smart crossover preference ¢y 60

Table 5.4 MAR1: Crossover probability & 61

Table 5.5 MART1: Search rate A 61

Table 5.6 MART1: Search intensity u = 61

Table 5.7 MAR1: Neighbourhoods 7 61

Table 5.8 MART1: Size of the shift assignment neighbourhood N3 62
Table 5.9 Overview on sample instances. 67

Table 5.10 MARz2: Population size 69

19



20

List of Tables

Table 5.11
Table 5.12
Table 5.13
Table 5.14
Table 5.15
Table 5.16
Table 5.17
Table 5.18
Table 5.19
Table 5.20
Table 5.21
Table 5.22
Table 5.23
Table 5.24
Table 5.25

MAR2:
MAR2:
MAR2:
MAR2:
MAR2:
MAR2:
MAR2:
MAPS:
MAPS:
MAPS:
MAPS:
MAPS:
MAPS:

Crossover, preference for fitter memes
Crossover vs. Mutation 69
Selection pressure 70
Search rate A 70

Length of tabu list |[L| 70
Search intensity p 71
Neighbourhoods 7 71
Population Size 73
Mutation and search rate 73
Mutation weight 74
Selection x 74

Search intensity 74
Neighbourhood 75

Comparison with literature: Real life instances
Comparison with literature: Random instances

69

78
79



INTRODUCTION

Many working areas require staff to maintain high concentration when performing
their tasks. This includes air traffic control, security checking, supervision or assem-
bly line workers. Loss of concentration might result in dangerous situations. It is
thus required, often by law, that staff working in such areas take breaks after given
time periods.

Breaks are periods during working shifts when staff is allowed, or in some cases
obliged, to discontinue work in order to recover and to perform personal activities
like having meals or using facilities. In many countries constraints for work and
break periods are governed by federal law, i.e. for Austria, this can be found in
paragraph 11 of Arbeitszeitgesetz [25]. Some employers might grant additional or
extended breaks to comply with ergonomic needs of staff members and in some
working areas, breaks after certain working periods might even be crucial due to
security related issues. While each employee is supposed to take breaks according to
the mentioned constraints, also staffing requirements are to be fullfilled at all time,
i.e. enough staff must be available to perform a specific task during any timeslot.

Consider, for instance, airport security staff in charge of monitoring baggage
x-ray machines: The person working in front of the monitor is required to keep
high concentration in order to prevent mistakes that might result in hazardous
items passing through. Thus, for all staff, breaks are mandatory to properly recover
after given periods of working time. Additionally, suppose there are estimated
staffing requirements according to scheduled aircraft take-offs. Now breaks are to
be scheduled such that all employees take breaks within given intervals, but at the
same time a minimum required number of employees is monitoring the screens. In
order to avoid overestaffing and thus minimise personnel costs, we may also aim at
an exact number of employees being present, instead of a minimum.

Our particular problem statement origins from a real world scenario in the area of
supervision personnel. We regard a shiftplan that consists of consecutive timeslots
and of shifts. Each shift starts and ends in a specific timeslot and must contain a
given amount of breaktime. Shifts may overlap in time. There are several constraints
concerning the distribution of breaktime within a single shift such as minimum and

21
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Breaks are scheduled s.t. no break is longer than two timeslots, and no working period is longer than six
timeslots. The staffing requirements are not satisfied in all timeslots, i.e. there is undercover in timeslot t» and
overcover in timeslots f1 and fyy.

Figure 1.1: Shiftplan with different shifts and breaktimes

maximum values limiting the length of breaks and worktime, to which we refer as
temporal constraints. Additionally, during each timeslot a given number of staff is
required to be working. The breaktime for each shift is to be scheduled such that the
temporal constraints are satisfied and staffing requirement violations are minimised.
A shiftplan with a possible, though sub-optimal, solution is depicted in figure 1.1.
We denote our formulation as BREAK SCHEDULING PROBLEM and abbreviate it with
Bsp.

In literature, this problem has mainly been addressed as part of the so-called shift
scheduling problem, where shifts are scheduled along with breaks. For this problem,
there has been some previous work, like a set-covering formulation developed
by Dantzig, [12], an integer programming formulation with implicit modelling of
breaks by Bechtold and Jacobs [4], or heuristic methods suggested by Canon [11]
and Tellier and White [32]. However, the problem of shift scheduling with breaks,
as defined in the mentioned works, differs significantly to our case. Bsp considers
scheduled shifts are part of the input and the objective is to insert breaks according
to staffing requirements and temporal constraints.

For Bsr there has been previous work by Beer et al. [5, 6], who suggest a min-
conflicts based metaheuristic and present experimental results on real life and
randomly created instances. This previous work however leaves some open questions:
What is the computational complexity of Bsp? How do other methods perform on
Bsr? And is there a method that is able to improve the current results on Bsp?
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1.1 OBJECTIVES

The objectives of this work are:

¢ Determination of computational complexity for Bsp.

* Design and implementation of a metaheuristic based on the concept of memet-
ics to obtain good solutions for Bsp. This includes the definition of a memetic
representation, the crossover, mutation and selection operators as well as a
method for local improvements.

* Determination and experimental evaluation of parameters that influence the
process of the designed method.

¢ Comparison to state of the art results.

1.2 RESULTS

The following are the main contributions of this thesis:

¢ We prove that Bsr is NP-complete when break patterns are defined explicitely
as part of the input.

¢ We propose three algorithms to optimise the break scheduling problem. Each
of them is based on the concept of memetic algorithms introduced by Moscato
[23]. The key idea is to improve a set of solutions, which have been created
randomly or by some quick heuristic, by applying genetic operators together
with some local improvement technique. We propose two different memetic
representations, a set of genetic operators, a penalty system to detect local
optima, as well as a local search heuristic based on different neighbourhoods
and an optional tabu list.

¢ We experimentally evaluate the parameters that influence the optimisation
process. The impact of each parameter is statistically verified.

* We compare our algorithms with the best existing results for this problem
in literature. One of our algorithms returns improved results on 28 out of 30
instances. To our best knowledge, these results represent new upper bounds.
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1.3 ORGANISATION

The remaining parts of this thesis are organised as follows: We first give a formal
problem definition of BSP, present our complexity results and an give an overview
on related work in Chapter 2. The concept of memetics and memetic algorithms is
explained in Chapter 3. Chapter 4 provides an in-depth description of the memetic
representations, the local improvement technique and the three proposed algorithms.
Details on the experimental parameter optimisation, the nature of the real life and
randomly created instances and a comparison with literature is given in Chapter 5.
We draw our conclusions in Chapter 6.



THE BREAK SCHEDULING PROBLEM

2.1 PROBLEM STATEMENT

The break scheduling problem (Bsr) regards a shiftplan that consists of consecutive
timeslots and of shifts starting and ending in defined timeslots (the length is the
difference between start and end). One shift represents exactly one employee on
duty. Two or more shifts may overlap in time, i.e. have timeslots in common. A
timeslot in a particular shift is referred to as slot. A slot can be assigned one of
three values: break, worktime or time used for familiarisation with a new working
situation. The objective is to find an assignment for each slot, such that breaks are
distributed within each shift according to given criteria, while violations of staffing
requirements, which are given for each timeslot, are minimised.

We first define relevant terms for Bsr and then continue with a formal problem
definition.

Definition 2.1 (Timeslot). A timeslot is a time period of fixed length. In our real life
problem, one timeslot corresponds to a period of five minutes.

Definition 2.2 (Shift). A shift S is defined by a set of n consecutive timeslots S =
{ti,tiv1, s tign}: Vj(i <j < i+n)itholds thattj,; —t; = 1. S; = t; denotes the shift
start and S, = t;;,, denotes the shift end. Each shift represents exactly one employee
on duty.

Definition 2.3 (Slot). A slot is a timeslot in a particular shift. A slot can be assigned
one of three values: 1 (1-slot) for a working employee, 0 (0-slot) for an employee on
break or 0’ (0’-slot). 0'-slots are assigned to those and only those slots that directly
follow a sequence of 0-slots. A 0'-slot stands for an employee who is getting familiar
with an altered working situation after a break. During a 0’-slot, the employee
is not consuming breaktime but neither counted as working regarding staffing
requirements.

25
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Definition 2.4 (Break). A break B is a set of consecutive 0-slots within a particular
shift. The first slot in the set is referred to as break start, and the last slot as break
end. A break is associated to exactly one shift.

Definition 2.5 (Work period). A work period W is a set of consecutive 1-slots and the
succeeding 0'-slot.

Definition 2.6 (Breaktime). The breaktime for a shift S is the number of 0-slots that
have to be assigned to S. The breaktime depends on the shift’s length |S| and is
given as input by a function 7(|S|).

Definition 2.7 (Temporal Constraint). A temporal constraint defines global restrictions
on the lengths and locations of breaks and worktime in shifts.

Definition 2.8 (Break pattern). A break pattern Ds for shift S, Ds C S is a set of
timeslots defining an assignment of breaks satisfying the shift’s breaktime 7(|S|)
and the set of constraints C. It holds that |D;| = 7(|S]).

Definition 2.9 (Domain). The domain D; of a shift S is the set of all possible break
patterns for S. Dg is induced by C and 7(|S|). The size of Dg usually grows expo-
nentially with respect to |S|.

Definition 2.10 (Staffing requirements). Staffing requirements denote the number of
required 1-slots for each timeslot ¢t € T.

We formally define Bsp as follows:

INSTANCE A tuple (k,S,7,p,C):

k: Number of timeslots. Given k, we define a set of consecutive timeslots T =
{1,2,...,k}.

S: Collection of shifts, each shift taking place within T, VS € S: S C T.

7(|S

); Function that maps each shift length to a value denoting its breaktime.
p(t): Function that maps each timeslot ¢ to its staffing requirements.

C: Set of temporal constraints {Cy,Cy,..Cs5}, as defined below.
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C; Break positions: Defined by (dq,d»). In each shift, the first d; and the last d
slots must be 1-slots, i.e. a break may start earliest d; timeslots after the start
and end latest d, timeslots before the end of its associated shift.

C, Lunch breaks: Defined by (4, g, 11,12). Each shift S with |S| > h must contain a
lunch break consisting of at least ¢ consecutive 0-slots. The break may start

earliest [ timeslots and end latest I, timeslots after the start of its associated
shift.

C3 Duration of work periods: Defined by (w7, w;). The number of timeslots in each
work period must range between w; and w,.

Cs4 Minimum break times: Defined by (w, b). A work period containing a number
of timeslots greater or equal w must be followed by a break greater or equal b
timeslots.

Cs Break durations: Defined by (by,bs) The length of each break must range be-
tween by and b, timeslots.

A sample instance of Bsp with a possible solution is depicted in Figure 2.1.

overcover undercover

Ttttz ty b0t by g tortipt11:tip: ti3: t1a: bis| Eie| ti7| t1g| F19) E20: t21| Eao| E23: Ea4: tos: tog: o7 tag: Ea9: t30
p(t;)) 22727101 21332 1 1:3:4:4[6|3|4]|2[3:3]5|2i2:2:2:212:2:2

S7|1 11 1io§019 111 1 1io§0fg 1|1 |1

S ~ —~—"—————~——""1 1 1|1|lofolo|1 1|1]oi0 1 1 1

1-slot break work period {
S5 11 1|1fofol1|1 1fojoio 1 1 1
Sy 1frfi]ifoiol1]|1r 170i0i0 1 1 1
o’-slot - —

S3 — 1|1|1|1fo o|l1]|1 1 0:0.0 1 1 1

Szll 1:71 QOGN O 1 1 1 JSUNNGN O 1 1 1|1

S1 |1 11 1 1:0:0:0 1 1|1fofofo]: 1]x

Solution for instance (k, S, T,p,C) with k = 30, S = {S1, S2,..57}, T(|S]) = 3 if |S| < 15;4 otherwise, p as stated in
the second line, C; = (3,3), C2 = (25,4,7,7), C3 = (3,6), C+ = (5,2), C5 = (1,3)

Figure 2.1: A sample instance of Bsr with solution and explanations

OBJECTIVE Let P = (k,S,7,p,C) be an instance of Bsp. The objective is to find
a mapping B relating each shift S € S to a break pattern D € D, such that the
following objective function F(B,P) is minimised:
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E(B,P) =w,-O(B,P)+w, UB,P)
where

* w, and w, are weights for over- and undercover violations respectively.

O(B,P) =) max(0,p(t) — w(B,t)) i.e. sum of undercover
teT

U(B,P) =Y max(0,w(B,t) —p(t)) i.e. sum of overcover
teT

w(B, t) the number of 1-slots in timeslot ¢ € T according to B

2.2 COMPLEXITY

We present a proof of NP-completeness for Bsr under the condition that break
patterns are given explicitly as part of the input. The hardness is proven by reduction
from the well-known NP-complete problem SEr COVER BY 3-SETs, abbreviated X3C
[17].

Bsp can be re-formulated as decision problem with the same input (k, S, 7,p,C).
The objective is to decide whether for an instance P there exists a solution B such
that F(B,P) = 0.

We show that Bsp is in NP.

Proof. We are given input (k, S, 7,p,C) and construct a certificate by generating a
break pattern for each S € S. The certificate can be checked in polynomial time, or
more precisely in O(k * |S]), by checking for each shift if the temporal constraints
are satisfied, and then checking for each timeslot if the staffing requirements are
satisfied. O

We define Bsr’ as modification of Bsp as follows:

Definition 2.11 (Bsp’). 0’-slots are eliminated from the problem, i.e. break patterns
in Bsp’ contain only 0- and 1-slots.

As instance we are given a tuple (k, S, 7,p,7), where the definition of k, S, 7, p
equal those in Bsr and (S) is a function that maps each shift S to a set Ds of break
patterns. It must hold that VD € D; : |[D| = 7(S).



2.2 COMPLEXITY

The objective of Bsp’ is to decide whether for an instance P’ there exists a solution
B that relates each shift S € S to a break pattern D € D, such that F(B,P’) = 0.

The difference between Bsr and Bsr’ is that for Bsp the set of possible break
patterns, or domain, D; for a shift S is given implicitly by 7(S) and C while for Bsp’
this set is given explicitly by y(S).

We show that Bsr” is NP-complete.

Proof. The NP-membership of Bsp” follows from the NP-membership for Bsp .
We show that Bsr’” is NP-hard by reduction from the well-known NP-complete
problem X3C [17].

Definition 2.12 (X3C). Instance: A set U with |U| = 3m, a collection F of 3-element
subsets of U, VF € F : |F| = 3. Question: Does F contain an exact cover for U, i.e. a
subcollection 7/ C F, s.t. each element of U occurs in exactly one member of F'?

From an instance of X3C with input (U, F) we construct an instance of Bsp’ with
input (k, S, 7,p,v) as follows:

N
¢ VS5€S8:S =T (remember that T = 1,2, ...,k as per definition of Bsr’).
e VSecS:1S=3.

e We define a bijective function ¢ that enumerates all elements u; € U: (1) =
1,0(up) =2,...,0(uzy) = 3m.

e Vte T:p(t)=|S|—1, or in other words, in each timeslot exactly one break
is required.

e Leto(F) ={c(f) | f € F}, then for each shift S € S, ¥(S) = {¢(F) | F € F}

Obviously, all of these steps can be done in polynomial time.
We now show the equivalence of this reduction.

Let P’ be an instance of the Bsr’ problem obtained from an instance X’ of the X3C
problem by applying the steps described above.

29
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With this construction, the number of shifts in P’ equals the number of sets in
X that are needed to cover U. All shifts are of the same length, stretching over all
timeslots. The timeslots are defined by applying ¢ to all elements in U. In each
timeslot, exactly one 0-slot is required. All shifts S € S share the same domain D,
which contains the contents of F € F mapped by 0.

We now show that X € X3C < P’ € BSP’ holds.

= If X is a YES instance of X3C, then there exists a collection of sets F’ such that
all elements u € U occur in one F € F'. By applying ¢ to all elements in each set
F € F’, we obtain a solution for P’, namely a break pattern for each shift. Thus, P’
is a YES instance of the reduced Bsr’ problem.

< If P’ is a YES instance of Bsp’, then there exists a set of break patterns such that
each timeslot t € T occurs in exactly one break pattern (each timeslot must contain
exactly one 0-slot according to p). By applying ¢! to all elements in all sets in B3, we
obtain a solution for X. Thus, X is a YES instance of the original X3C problem. [J

We present an example of the X3C to Bsr’ reduction as follows:

Let X = (U, F) withid = {A,B,C,D,E,F,G,H,I} and
F = ({A,CF},{C,D,E},{F,G,H},{A D,G},{B,G,I1},{D,E,H}), Then an in-
stance P’ = (k, S, T, p,y) of Bsp’ is constructed as follows:

o k=|U|=9 thus T = {1,2,3,4,5,6,7,8,9}

S| =3

S1 =S, =53 =1{1,2,3,4,5,6,7,8,9}

. U\U\A\B\C\D ElF|G|H]|I
Tlaf2lsfalslel7]s ]9

ot |alzlslals]e]r]8]
p(t)‘z‘z‘z‘ ‘2 2‘ ‘2‘2

D1 =D, ="D3=({1,3,6},{3,4,5},{6,7,8},{1,4,7},{2,7,9},{4,5,8})

A solution for P’ is the mapping (51,{1,3,6}),(S2,{2,7,9}), (S3,{4,5,8}). Figure
2.2 depicts this solution. It is easy to construct the solution for the X3C instance X
by looking up the values in the ¢ function.
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Figure 2.2: Solution for Bsr” instance reduced from X3C instance

2.3 RELATED WORK

In literature, break scheduling problems have been addressed in two ways: As part
of the so-called shift scheduling problem and, as in our case, as break scheduling
problem with fixed shifts. The objective of the former problem is to schedule shifts
and breaks at the same time according to given constraints, while for the latter,
readily scheduled shifts are part of the input and the objective is to place breaks into
the shifts according to given constraints.

In practice, the decision on whether to schedule shifts along with breaks or each
independently depends on many different factors, such as predictability of staffing
requirements or constraints imposed by federal laws. It makes sense to schedule
shifts and breaks independently in if employer has to announce shiftplans well in
advance with little possibility to change, while staffing requirements are difficult
to predict and change rapidly between short timeslots. In this case, new break
assignments may be necessary for shifts that cannot be moved.

Another point is that, to our best knowledge, there has not yet been any work
on shift scheduling with breaks for problem formulations that allow an arbitrary
number of breaks. To find a solution for such a problem, one way is to schedule
shifts together with breaks at the same time and another to first schedule the shifts
and then to insert the breaks into the existing shiftplan. It is unclear which approach
is more effective, but the first one certainly considers a larger search space.

Most work however can be found on shift scheduling with breaks, though in all
problem formulations the number of breaks is restricted. We give a quick overview
on related work on both the shift scheduling with breaks problem and the stand-
alone break scheduling problem.
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2.3.1 Shift scheduling with breaks

Research on methods to solve or optimise shift scheduling problems with breaks
started in the 1950’s with Dantzig’s set-covering formulation [12] for an assignment
of shifts with up to three breaks for toll booth staff. In this formulation feasible
shifts are enumerated based on possible shift starts, shift lengths, breaks, and time
windows for breaks. In the 70’s, this problem was addressed by Segal [30] who
presented a set of network-flow formulations for operator-scheduling, where shifts
with breaks and reliefs for telephone operators were to be scheduled.

Based on Dantzig’s formulation, various integer programming approaches were
introduced in the 1990’s. Bechtold and Jacobs proposed an integer programming
formulation [4] where break assignments are modelled implicitly. The advantage of
this approach is that the number of variables does not increase as rapidly as within
Dantzig’s formulation. They claimed this method to be superior to Dantzig’s formu-
lation with respect to execution time, memory requirements and finding optimal
solutions for larger instances. Thompson [33] presented an integer programming
model with implicit modelling of both shifts and breaks. He reported improvements
on execution time compared to Bechtold and Jacobs. Yet another integer program-
ming model is proposed in Aykin [3]. Aykin later compared the different models for
shift scheduling with breaks in [2]. While [3] requires more variables than [4], their
approach finds optimal solutions in shorter time.

A very recent work from Rekik et al. [29] in 2010 addresses a problem more similar
to our problem formulation. They propose an implicit model for a shift scheduling
problem with multiple breaks. Additionally one break in each shift can be fractioned
into multiple breaks resulting in break profiles, which are something similar to what
we denote as break patterns. Additionally, possible work stretches, similar to our
work periods, are constrained by a maximum and minimum length.

Besides exact methods, also meta-heuristic methods have been proposed for shift
scheduling problems with breaks. Tabu search algorithms have been introduced by
both Canon [11] and Tellier and White [32] for problems in the call or contact center
industry. Both report satisfactory results. A genetic algorithm with local search and
parametrised fitness function was presented by Yamada et al. [35] for an information
operator scheduling problem. The shifts according to their problem definition last
up to five hours and contain up to five breaks.



2.3 RELATED WORK

2.3.2 Break scheduling

The break scheduling problem with a fixed shiftplan has been attended by Beer et
al. [5, 6]. They propose a min-conflicts based local search algorithm, a tabu search
and a simulating annealing approach to optimise this problem. The min-conflicts
heuristic iteratively improves the current solution by focusing only on breaks causing
temporal constraint or staffing requirements violations. In each iteration, a break

that violates a constraint is selected randomly and its neighbourhood constructed.

The move leading to a solution improving or at least not worsening the current

violation degree is performed and the new solution used for the following iteration.

To avoid local optima the authors apply a random walk strategy: In each iteration
a random, possibly worsening, move is performed on a randomly selected break
with some probability.

The authors evaluate different parameter settings and publish their best results
for two different flavours of the algorithm, one considering temporal constraints as
hard constraints and thus resolving them from the very beginning, and another one
which randomly initialises solutions which may violate temporal constraints. The
second version resolves temporal constraints along with the staffing requirement
violations.
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MEMETICS

The concept of memes was presented by evolutionary biologist Richard Dawkins
in the last chapter of his book “The Selfish Gene” in 1976 [14]. His intention was
to show applications of Darwin’s theory of evolution [13] to other fields than
biological evolution. He claims that cultural development within human societies
undergoes a process that can also be seen as evolutionary. His ideas were picked
up by scientists of different disciplines such as psychologist Susan Blackmore [7],
philosopher Daniel Dennet [16] or anthropologist Scott Atran [1], just to mention
a few. We take advantage of the concept of memetics to design an optimisation
algorithm, as suggested by Moscato [23].

3.1 CONCEPT AND TERMINOLOGY

In this work, we will stick to the terminology coined by Dawkins and Blackmore
[7, 14]. Similarly to genes, memes represent replicable units that are hosted by an
individual. However, rather than for a biological unit, a meme stands for a cultural
unit like a thought, an idea, a piece of music. Multiple memes may work together
and make up cultural entities like music genres, political or religious ideologies,
or instructions on how to construct something. Other than genes, memes are of
non-physical, intangible nature. A set of memes with different characteristics is
referred to as memepool.

Looking at the development of cultural entities, a behaviour similar to biological
evolution can be observed: Cultural entities, or sometimes only single memes, are
passed on within individuals through communication, i.e. they replicate. Through
misunderstandings or misinterpretations they may change arbitrarily, i.e. they mutate.
Selection might take place through personal preference of an individual for a specific
meme or by external influence, for example by censorship. An important difference
between genes and memes is that the latter can be improved independently by
its hosting individual, e.g. a person can improve an idea previously copied from
someone else.
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Based on the work of Dawkins and Blackmore [7, 14], let us discuss the following
hypothetical example: We define the cultural entity “Spanish Tortilla Preparation
Instructions” consisting of the memes “Ingredients”, “Potato-cutting technique”,
“Frying temperature”. The ingredients are usually potatoes, eggs and olive oil, but
sometimes onions are added. Potatoes can be cut as sticks, even or uneven slices, or
tetrahedrons. Each of these options represents a meme, which can be manipulated
and passed on to fellow individuals.

In our example, suppose that individual A, who used to cut the potatoes as
sticks, learns from individual B the technique of tetrahedron-slicing. He likes it and
replaces his previously obtained stick method. Later, he publishes this recipe in a
bestselling book which causes its 10,000 readers to also apply and spread the tortilla
recipe with the recommendation to cut the potatoes as tetrahedrons. The tetrahedron
meme has thus successfully superseded the stick meme. Here, Replication took place.
Other than in biological evolution, memes are passed on also between individuals
of the same generation.

Now consider a new individual C copying the tortilla recipe from individual
A, but he understands octahedron instead of tetrahedron. Now he has serious
difficulties cutting potatoes in that shape, eventually gives up, and forgets about
the whole tortilla recipe. The tortilla recipe that includes the octahedron meme thus
extincts. It was not fit enough to survive the requirements of tortilla preparation.
This incorrectly imitated meme can be seen as mutated. Such an incorrect imitation
can happen through simple misunderstandings or misinterpretations occuring quite
frequently in human communication.

The selection mechanism was already implicitly included in the previous two
paragraphs. Individual A selected the tetrahedron slicing method over the stick
method because it improved his overall tortilla cooking and eating experience.
Similarly, the mutated octahedron method was not selected to continue inside the
memepool.

As opposed to genes, an individual is able to independently modify any of its
memes. Applying such a modification, the individual usually aims at improving the
cultural entity as a whole. In our example, this could be towards optimising the
preparation time and taste of the tortilla. It is easy to see that this optimisation can
be quite subjective. While the preparation time is relatively easy to measure, taste is
subject to personal preference.

This mechanism of local improvement along with high replication rates is what
accelerates the evolution of memes compared to the evolution of genes. In biolog-
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ical evolution, as presented by Darwin [13], genetic changes appear randomly by
mutation while selection pressure makes sure genes with a lower fitness extinct.
Replication occurs only by heredity, which means a gene is replicated only from
one generation to another. This makes the biological evolution process much slower
compared to memetic evolution, where memes may spread to an arbitrary number
of individuals within or between generations. Changes occur much more frequently,
given that each individual may modify its memes in any way it likes. Also memes
can improve much faster, since each individual has control over its memes, as
opposed to genes, which are improved over many generations by natural selection.

3.2 FROM MEMETICS TO MEMETIC ALGORITHMS

The term Memetic Algorithm was introduced by Moscato in [23]. Memetic algorithms
are also known as Hybrid Genetic Algorithms as presented by Goldberg [19]. The
idea is to imitate cultural evolution on a pool of different solutions for an instance
of an optimisation problem in order to obtain improved solutions. In contrast to
purely genetic algorithms, also local improvements are integrated in addition to the
standard operators of biological evolution. It can thus be seen as a hybridisation of
genetic operators with a local improvement method. We can also say that individuals,
each carrying a (probably sub-optimal) solution, are able to independently improve
their genes. Looking into the concept of memetics as described in the previous
section, we find that it describes exactly this behaviour. Further, crossover may take
place within more than two individuals and we will thus denote it as “interaction”.
Selection is often integrated in the interaction process in this way, that an individual,
when copying memes from others, may choose memes with specific characteristics
over others.

Memetic algorithms have been investigated on many different problems, such
as the travelling salesman problem [24], timetabling problems [9, 10] or quadratic
assignment problem [21].

The challenge of designing an algorithm based on memetics to solve a particular
optimisation problem includes many different aspects. The very basis of any memetic
algorithm is an appropriate memetic representation of the problem, i.e. the definition
of a meme, an individual and a fitness function. Only upon this representation, the
interaction, selection, mutation and improvement operators can be built.
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Each of these operators again requires careful definition taking into consideration
many different options: How exactly should the interaction take place? How many
individuals should be involved in each interaction? Regarding which criteria should
an meme be chosen over its competing memes? Which kind of mutation should
be applied? Should every single meme be locally improved or only selected ones?
If we choose for selected memes, how should they be selected? How intensively
should the local improvement be performed? Which method should be used for
local improvement?

The choice on the local improvement process itself again opens up a broad range
of possibilities. In fact, any heuristic, and for some problems also exact methods,
can be used. For optimisation problems, local search is a popular choice. However,
local search again comes in many different flavours: One or more neighbourhoods
can be defined. In the case of various neighbourhoods, many different exploration
strategies exist. And within the chosen strategy, should we use best, random or first
improving steps? Integrate a tabu list? Use perturbation?

Additionally, several parameters might influence the algorithm, which impose an
additional level of difficulty for the design of a good memetic algorithm. Examples
for such parameters are the number of individuals, i.e. the population size, the
intensity of local improvement or the selection pressure.

We address these questions in Chapter 4 within the description of the algorithms,
and in Chapter 5 within the discussion of the parameter evaluation.



SOLVING THE BREAK SCHEDULING PROBLEM

To solve the Break Scheduling Problem, we propose two different memetic repre-
sentations, one defining a meme as a single shift and the other defining a meme
as a group of shifts which largely overlap in time. Upon these representations,
we present three different novel methods to obtain good solutions for Bsp. The
algorithms are based on the concepts discussed in Section 3. In Chapter 5 we show
how the different representations influence the quality of the solutions.

The following characteristics all algorithms have in common:

¢ Initialisation by random assignment of break patterns followed by a simple
local search.

¢ Use of elitism, i.e. the fittest individual (elitist) is determined after each opera-
tion and is prevented from worsening its fitness in the following iteration.

* Creation of new individuals by copying memes out of the current memepool.
* Mutation of memes by randomly changing break assignments.
* Local improvement of memes by a local search heuristic.

¢ The local search is based upon the same set of three neighbourhoods.

Each of these operations can be done in different ways depending on the memetic
representation in use. We propose one algorithm, Memetic Algorithm with Repre-
sentation 1 or MAR1, based on the first representation, and two algorithms, Memetic
Algorithm with Representation 2 or MAR2 and Memetic Algorithm with Penalty
System or MAPS, based on the second representation. MAPS, as the name suggests,
additionally uses a penalty system that tries to escape local optima.

We first introduce the different representations and some terminology, then de-
scribe the initialisation procedure, the neighbourhoods and the local search proce-
dure. Each of the algorithms with its specific operators is then described separately.
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4.1 REPRESENTATIONS AND DEFINITIONS

By memetic representation we refer to the representation of a solution B by a
set of memes M, similarly to genetic representations in genetic algorithms. The
genetic operators are defined upon this representation. We present two different
representations.

Definition 4.1 (Memetic Representation 1). A meme M is represented by exactly
one shift S € § and its associated breaks according to B and each shift represents a
meme, ie. M\{UMU---UM,, =S

T : ti: to: 30ty b5 ter t7o g tortigitinitioitigitiactisitie: ti7:tigit19: 10 t1: 101 1031 tha 05 o6 17 a8 129 t30: 31 132 133 34 135
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Shiftplan with solution represented by set of memes M with 10 memes, each meme represented by one shift.

Figure 4.1: Memetic Representation 1

The problem with Representation 1 is a strong interference between memes
regarding the satisfaction of staffing requirements. This makes the design of effective
genetic operators difficult, as we will see in Section 4.6. We propose a second
memetic representation, which aims at avoiding these interferences.

Memetic Representation 2 overcomes this problem by regarding interfering shifts
as memes. Shifts interfere if they take place during the same time period and thus
may assign breaks to the same timeslots.

Definition 4.2 (Memetic Representation 2). A meme M is defined by a period
[m',m"), with m’,m" € T and contains

e Those and only those shifts S € S : m" < |[(S.+ S5)/2] < m”, S5 and S,
denoting shift start and end
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e The breaks associated to these shifts

Each shift S € S is thus contained in exactly one meme: VM;, M; € M : M; N M; =
O, MiUMU---UM,, =S.

We use the following heuristic to determine the periods that induce the set of
memes for Representation 2: For each timeslot t € T let set of shifts S; C S s.t.
VS:S e Siiff t € S, i.e. the set of shifts taking place during t.

We assign a penalty value p(t) to each t € T:

0 ift<S,+d
0 ift>S.—ds
p()= )81 ifSi+dy <t<Ss+di+b+w
1 ifS,—dr,>t>S,—dr,— by —un

10 otherwise

Recall that S; and S, denote start and end of shift S, d;, d» denote the number of
timeslots after Sy and before S, respectively, to which no breaks can be assigned, by
stands for the minimal length of a break and w; for the minimal length of a work
period. These values are described in more detail in Section 2.1.

The lower the penalty value p(t) for a timeslot ¢, the less breaks can be assigned
to t. This makes it a good separation point.

We determine a set of timeslots T’ C T with size |T'| given by a parameter such
that

e Y p(t) is minimised
et
° Vtl, t;- eT':

pairs of timeslots is at least half of the smallest shift length

/ /
ti—t]-

>d withd = L(Igug |S])/2], i.e. the distance between all
S

To retrieve this set, we start with adding timeslot ¢, to T" with ¢ = t s.t. rtm%l p(t),
S

i.e. the timeslot with the lowest penalty value, ties are broken randomly. We continue
by adding timeslots t; = f s.t.

41



42

SOLVING THE BREAK SCHEDULING PROBLEM

° i, p(t)

* Vi, t; €T UL: >d

ot

We obtain a set M of memes with |[M| = |T’| — 1 by sorting the elements in T’
and defining each meme M; by period [t} t ;).

Definition 4.3 (Meme Fitness). For Representation 2, we define the fitness F(M) of a
meme M as the weighted sum of staffing requirement violations in all timeslots that
are covered by the shifts contained in M, or more formally: Let T' = {JS,VS € M

FE(M)=F(B,P,T") =w,-O(B,P,T') +w, - U(B,P,T)

where

w, and w, are the same weights for over- and undercover defined in Section
2.1.

O(B,P,T') =} max(0,p(t) — w(B,1)) ie. sum of undercover
teT’

U(B,PT') =) max(0,w(B,t) — p(t)) i.e. sum of overcover
teT’

w(B,t) the number of 1-slots in timeslot t € T’ according to B

This is the fitness function presented in Section 2.1, but applied only on a subset
of T.

Figure 4.1 depicts a possible memetic representation of Bsp.

Definition 4.4 (Individual). An individual I contains a solution B, i.e. a mapping of
shifts to break patterns for each shift S € S and a Fitness value F (I), which is the
value of the objective function F(B, P).

Definition 4.5 (Population). A population is a set Z of individuals.

Definition 4.6 (Generation). A generation is a population during an iteration of the
algorithm.

Definition 4.7 (Memepool). A memepool is the set of all memes in a given generation.
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Figure 4.2: Memetic Representation 2

4.2 BREAK PATTERNS

As mentioned in Section 2.1, using input data C and 7, a set of break patterns, or
domain, D; for each shift S can be computed. We refer to D as domain for shift S.

The problem of finding a single break pattern D € D, can be modeled as simple
temporal problem as presented by Dechter et al. [15] and consequently be solved in
cubic time with respect to |S| using Floyd-Warshall’s shortest path algorithm [26].
The size of a domain |D;| usually grows exponentially with respect to |S].

We precalculate a subset D, of D; for each shift length with the following restric-
tions:

* by =2, by =3, by, by denoting minimal and maximal allowed length of breaks
respectively, except for lunch breaks, which are all set to their minimal size
g==6

e Break patterns may include breaks of different sizes. E.g. if 7(|S|) = 10 without
lunchbreak, then this breaktime can be made up out of two breaks with
length 2 and two breaks with length 3 or five breaks with length 2. Possible
break patterns in D; for a shift S thus include all possible combinations of
break lengths that sum up to 7(|S|) as well as their permutations. In the

example defined the following are all possible permutations of break lengths:
(3,3,2,2),(2,3,2,3), (3,2,3,2),(2,2,3,3), (2,3,3,2), (3,2,2,3) and (2,2,2,2,2).
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S| EZARIE 24
60 2,514 || 110 1,028,879
66 7457 || 114 7,685,738
72 13,175 || 116 7,075,413

92 14,149 || 126 56,150,948
96 223,315 || 134 181,462,430
102 131,698 || 138 374,959,311
106 | 1,475,034 || 144 | 1,133,795,593
108 | 1,283,700

Table 4.1: Sizes of D’ for different shift lengths

To save computation time, we select only one permutation of each combination
at random. For the example 7(|S|) = 10, we would compute all possible
patterns with break ordering (2,2,2,2,2) and one selected randomly out of all
permutations of (3,3,2,2).

Figure 4.3 depicts an example for different break patterns and Table 4.1 shows
the sizes of D] calculated according to the described restrictions for different shift
lengths occuring in the publicly available instances. Specific information on the
instances is given in Section 5.2.2.

Figure 4.3: 7 possible break patterns for length |S| = 74

To save computation time and space, we use the following method to compute
D! for each shift: If, according to constraint C; (see Section 2.1), the shift contains a
lunch break, we consider each timeslot the lunch break may be assigned to according
to C; and divide the shift into a period before and a period after each lunch break
position. A domain for any of the periods depends on the length p of the period that
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is covered, the breaktime b it contains and C. Since C is defined globally, a domain is
identified by (p, b). For each possible period before/after lunch breaks, and periods
covering shifts that do not contain a lunch break, we compute a subdomain. Note

that periods with the same length and breaktime, i.e. (p, b), share the same domain.

We thus compute a subdomain for each tuple (p,b) and for each shift length we
store only references to the domains.
An example for this method is depicted in Figure 4.2

I )
p=25b=3 p=32,b=4 1] = 60, T(60) = 10
— ] [S] =50, 7(50) = 8
p=22b=2 p=25b=3
[ | I ] |S3| =50, 7(50) =8
p=25b=3 p=22b=1

[ ] |S4| =25,7(25) =3
p=25b=3
Some break patterns for p = 25,b = 3:

The first three shifts are divided into two parts by their lunch break. The parts with the same b and p, e.g. p = 25
and b = 3, as well as S4 with length 25 and no lunch break, have the same set of break patterns. We thus have to
compute and store it only once.

Figure 4.4: Computation of break patterns

4.3 INITIALISATION

We use the same initialisation procedure for all algorithms presented in this thesis.
Each individual I in the population is initialised in two steps: First, for each shift
S € § a valid break pattern D € D; is selected randomly. This provides us with
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a first solution satisfying the temporal constraints C. Second, a randomised local
search procedure is executed on the solution.

The randomised local search iterates the following steps: First, a break b is picked
at random out of all breaks of individual I and the set A" of neighbours in its single
assignment neighbourhood computed. This neighbourhood is described in Section
4.4.

Second, for each N € N let §(N, I) = F(N) — F(I), i.e. the difference between the
fitness values. Let N/ = {N € N : §(N,I) < 0}. If [N'| > 0 then we picka N € N/
at random, otherwise we do nothing.

The local search terminates when for 10 subsequent iterations || = 0, i.e. no
improvements could be found.

4.4 NEIGHBOURHOODS
4.4.1  Single Assignment

This neighbourhood, N;, comprises the set of all solutions that are reached by
applying a single assignment move. This move assigns a break b to a different set of
timeslots under consideration of C. This includes appending b to its predecessor or
successor, b or " respectively, resulting in one longer break. Examples for single
assignment moves are depicted in Figure 4.5. For the instances used in this work
(for details see Section 5.2.2), the size of this neighbourhood averages three to four
neighbours.

Two examples for possible moves in the single assignment neighbourhood. The second move shows two breaks
being joined to a longer break and thus eliminating one 0'-slot.

Figure 4.5: Single assignment moves



4.4 NEIGHBOURHOODS

4.4.2  Double Assignment

This neighbourhood, N,, consists of the set of all solutions that are reached by a
double assignment move. This move involves two breaks. We consider a break b and
both its predecessor b’ and successor b”, or only b’ respectively b” if b is the last or
first break within its shift. A double assignment move is a re-assignment of b and
b’ or b and b” under consideration of C. Like single assignment moves, two breaks
might be joined to form a longer break. Two breaks of different length may also
be swapped. This neighbourhood is significantly larger then the neighbourhood
constructed by single assignment moves. For the instances tested, its size amounts
to up to 100 neighbours. This neighbourhood is illustrated in Figure 4.6.

| q |>
| |
[ lh —J’ |

[ N I | )

Two examples for possible moves in the double assignment neighbourhood with two breaks of different lengths.

Figure 4.6: Double assignment moves

4.4.3 Shift Assignment

This neighbourhood, N3, consists of a set of solutions that are reached by assigning
all breaks associated to the shift S containing b. Possible re-assignments are retrieved
from in the pre-calculated set of break patterns D) described in Section 4.2. For
performance reasons, we do not consider the complete D/, but only a randomly

selected subset. The size of this subset determines the size of the neighourhood.

Figure 4.7 depicts some shift assignment moves.
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Four possible moves in the shift assignment neighbourhood. Any break assignment that satisfies C can be
contained in this neighbourhood.

Figure 4.7: Shift assignment moves

4.5 LOCAL SEARCH

We propose the following local search heuristic, which is used by all three algo-
rithms. In each iteration of the local search the following steps are performed on an
individual I: First, a break b is selected at random out of a set B of breaks. B may
comprise all breaks that are currently included in the individual’s solution or only
a subset. Second, a neighbourhood N out of three neighbourhoods {N7, N2, N3}
is chosen at random with a different probability for each neighbourhood given by
parameter 7 = (#1, %2, 1j3), which represents the probability for each neighbourhood
to be selected. Then the set A of all neighbours according to the chosen neighbour-
hood is computed. For each N € N let §(N,I) = F(N) — F(I), i.e. the difference
between the fitness values. Let N/ = {N € N : §(N,I) < 0}. If |[N’| > 0 then
I = N with N € N/ sit. I\r]réij{}/(S(N,I), i.e. the best neighbour is chosen with ties

broken randomly. Otherwise we do nothing. The local search terminates when for p
subsequent iterations || = 0, i.e. no neighbours with better or equal fitness could
be found. This procedure is influenced by three parameters: The size of B, the search
intensity determined by y and the probabilities of the different neighbourhoods
1. Different values for these parameters have been tested for each algorithm. The
results are presented in Chapter 5. Algorithm 1 outlines the local search procedure.

46 MAR1I — MEMETIC ALGORITHM WITH REPRESENTATION 1

This algorithm is based on Representation 1. The algorithm creates each offspring
either by mutation or by crossover from the previous generation. A k-tournament
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Algorithm 1 Search (Individual I, Breaks{ } B)
1 c+—0
2: repeat
3 b « select break b € B randomly
N « select and compute one of { N7, Ny, N3}

4
55 N —{NeN:6N,I) <0}

6:  if [N'| > 0 then

7: I — N € N with minimal §(N, I)
8: c+—20

9: else

10: c—c—+1

11 end if

12 until c ==y

13: return |

selector [8] decides which inidividuals survive in each iteration. The local search is
applied in each iteration on a subset of the population. 1.6 outlines this algorithm.

4.6.1 Selection

The selection operator selects a set of individuals that survive the current iteration.
First, an elitist E is determined by selecting the individual with the best fitness value
in the current generation (ties are broken randomly). The elitist individual remains
unaltered during the whole iteration.

Second, individuals are selected out of the current generation by a k-tournament
selector [8]: This operator randomly takes k individuals, k < |Z| out of the current
population to perform a tournament. Out of these k individuals, the one with the
best fitness value survives. This procedure is repeated |Z| — 1 times (|Z| — 1 since
one individual is represented by the elitist). The population now consists of the
elitist and the individuals selected by the tournament selection operator.

4.6.2  Crossover and Mutation

Each individual I € 7 \ E is replaced by an offspring created either by mutation or
by crossover. The elitist individual remains the same. Crossover takes place with
probability « and mutation with 1 — a, where & is a parameter set experimentally
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Algorithm 2 Memetic Algorithm with Representation 1

1: BUILDDOMAINS

2: I « Initialisation

3: repeat

4 E « fittest [ € T

5: 7 «— seLeEcT(Z) U E

6: for all individuals [ € Z \ E do

7: x « select random float uniformly distributed in [0..1]
8: if x < a then

o: J < select individual | # I randomly
10: I «+ crossover(l, J)

11 else

12: I «— MUTATE(])

13 end if

14: end for

15: m <— ’I | -A

16: L «— m fittest individuals in Z

17: forall L € £ do

18: B «+ set of all breaks contained in L

19: L «+ searcH(L,B)

20: end for

21: until timeout
22: return fittest ] € 7




46 MAR1I — MEMETIC ALGORITHM WITH REPRESENTATION 1

as described in Section 4.5. We propose a combination of two different crossovers.
Both select a partner individual | different to I randomly out of the generation and
create an offspring inheriting entire shifts (memes) with their breaks from one of the
parents. They differ in the decision about which shifts are taken from which partner.

SIMPLE CROSSOVER  An offspring is produced by randomly inheriting a percent-
age < of all shifts with their assigned breaks from one parent’s exchangeable shifts,
and the remaining shifts from the other parent. By exchangeable shifts we refer to
shifts with equal shift start and length. Figure 4.6.2 depicts this operator. Obviously,
the Simple Crossover merely perturbates a solution and improvements are not very
likely since the staffing requirement violations are not considered at all.

2 233111222244333433221133 2 233111222244333433221133

Two parent individuals and one offspring with under- and overcover violations, assuming undercover weight
w, = 10 and overcover weight w, = 2: fitness of left parent 104, fitness of right parent 72 and fitness of offspring
F(B3,T) =96

Figure 4.8: Simple Crossover

SMART CROSSOVER This crossover looks at each shift of one of the parents and
determines the constraint violations the shift is involved in, i.e. the sum of constraint
violations of the timeslots covered by the shift. The offspring inherits the respective
shift from the parent with lower constraint violations during the timeslots covered
by the shift. This way we are more likely to improve the fitness value of the offspring
compared to its parents. Figure 4.9 depicts this operator.
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22331 11222244333433221133

Two parent individuals with violations of each shift and under- and overcover violations, assuming undercover
weight w,, = 10 and overcover weight w, = 2: Fitness of left parent 104, fitness of right parent 72 and fitness of
offspring 64. The shifts with lower violations are inherited to the offspring, ties broken randomly. Here, Sq, S5, S¢
are inherited from the left parent, and S3, S4, S5 from the right parent. The result is an offspring with a better
fitness value than both parents.

Figure 4.9: Smart Crossover

MUTATION The mutation operator performs one random move on the given
individual using the single assignment neighbourhood, which is described in the
Section 4.4.

4.6.3 Local Search

In each iteration, we select a set £ C Z individuals, |£| = |I| - A of the current
population. A is a parameter whose value has been determined experimentally
as described in Section 5.1. On each individual L € L the local search heuristic
described in Section 4.5 is executed with the set of breaks B comprising all breaks
contained in I. Different values tested for A are described in Section 4.5.

4.7 MAR2 — MEMETIC ALGORITHM WITH REPRESENTATION 2

MAR:z2 is similar to MAR1, but uses Representation 2. The operators are mostly the
same as those presented for MAR1. Within this algorithm, we tested a tabu list as
part of the local search heuristic.
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Algorithm 3 Memetic Algorithm with Representation 2
1: BUILDDOMAINS
2: T « Initialisation
3: repeat
4 E « fittest | € 7

5: for all individuals I € Z \ E do
6: x « select random float uniformly distributed in [0..1]
7: if x < « then

8: ] < select random individual | # [

9: I < crossovEer(/, J)

10: else

11 I <+ muTaTE(])

12: end if

13: end for

14: 7 «+ seLEcT(Z) UE
15: m <— ‘I| A

16: L «— m fittest individuals in 7
17: forall L € £ do

18: B < all breaks contained in L
19: L «— searcH(L,B)

20: end for

21: until timeout
22: return fittest ] € 7
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4.7.1  Crossover and Mutation

The crossover and mutation operators in this algorithm work very similar to those
described in Section 4.6.2. Each individual I € 7 \ E is replaced by an offspring
created either by mutation or by crossover I € Z, except for the elitist individual.
Crossover will take place with probability « and mutation with 1 — «.

The crossover operator selects a partner | different to I randomly out of the
generation and creates an offspring inheriting each meme from either of the parents.
The decision on which meme to inherit from which parent can be taken randomly or
with a probability v to inherit the meme M with better fitness F(M). v is a parameter
for which different values are evaluated in Section 5.2.6.

The mutation operator performs one random move on the given individual using
the shift assignment neighbourhood, which is described in the Section 4.4.

4.7.2  Selection

The selection operator for this algorithm is exactly the same as described for the
MAR1 algorithm described in Section 4.6.1.

4.7.3 Local Search with Tabu List

Like MAR1, MAR?2 also performs the local search on a subset of individuals. The
search procedure is as described in Section 4.5 with the only exception that the
computed neighbourhood N is reduced by those neighbours that are currently
forbidden by a tabu list.

A tabu list [18] L is maintained for each break b. L contains the timeslots the first
slot of b has previously been assigned to. Whenever a move is performed by b, L is
updated: The oldest value of L is deleted and the current first slot of b is added. The
length |L| of the tabu list thus determines how long a value is kept tabu.

The neighbourhood N is computed as described in Section 4.5, but reduced by
those neighbours that are reached applying a move that includes moving the first
slot of b to any of the values contained in L. However, if any of the tabu moves leads
to a globally improved neighbour, it is allowed anyway. This is called an aspiration
criterion. The tabu list intends to prevent the local search from re-visiting previously
computed solutions.
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48 MAPS — MEMETIC ALGORITHM WITH PENALTY SYSTEM

MAPS uses Representation 2 as does MAR2. However, the algorithm is different
in many aspects: The crossover operator uses memes of the whole generation
to create an offspring instead of only two parents. We renamed the crossover
operator to the more appropriate term “interaction” operator as an analogy to the
interaction of multiple individuals in cultural evolution. Further, in this algorithm
the selection mechanism is included in the interaction operator. The mutation and
local search procedures consider only breaks contained in a subset of an individual’s
memes. Memes additionally keep a memory to track data about their search history.
Algorithm 4 outlines the method.

Algorithm 4 Memetic Algorithm with Penalty System
1: BUILDDOMAINS
2: 7 « Initialisation
3: repeat
4 E « fittest [ € 7

5 for all individuals I € Z \ E do

6: I <+ INTERACT-SELECT(Z)

7 E « fittest | € 7

8: M’ — ger(M' € M)

9: I « muTATE(I, M)

10: B « all breaks contained in M’
11: I — sEArcH(I, B)

12: I < PENALTY-UPDATE(I, B)

13 end for

14: until timeout
15: return fittest I € 7

4.8.1  Penalty System

For each meme M we store the following values:

Best fitness value B(M): The best fitness value F(M) the meme reached since the
start of the algorithm

Penalty value P(M): Number of iterations since last update of best fitness value
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The higher P(M), the longer the meme was not able to improve. This means it
is more likely to be stuck in a local optima. We use this value at two points of the
algorithm: The interaction operator prefers memes with low P(M), thus memes
stuck in local optima are likely to be eliminated, disregarding their fitness value
F(M). Second, the subset of memes which is used for the mutation and local search
also prefers memes with low P(M) and this way focuses on areas within a solution
where improvements can be found more easily. We describe this behaviour more
detailled within the following sections.

4.8.2  Selection and Interaction

The interaction procedure consists of two parts. We first create an individual by
selecting each meme M with the best current fitness value F(M) out of the current
memepool. This individual is likely to become the elitist individual in the current
population.

The second step contains a selection procedure: Each of |Z| — 1 individuals, |Z|
being the population size, is created as follows: For each meme M with period
[m’,m") we perform a k-tournament selection [8] on the set of memes with the same
period in the current memepool: We select k memes with the same period [m’, m")
at random out of the current memepool. Out of these kK memes, the meme with the
lowest penalty value P(M) is inherited to the offspring.

The first part assures to survive the best memes in the current memepool. The
second part forms the actual interaction procedure. Using P(M) as selection criteria,
we get rid of memes that have been stuck in local optima for too long. If a local
optimum constitutes in fact a global optimum, then it survives through the first step
of the interaction operator as described above. Figure 4.10 depicts the interaction
operator.

4.8.3 Mutation and Local Search

We evaluate the fitness function F(I) of each individual I € Z and determine
individual E € Z, which is the individual with the lowest value for F(I). On each
individual except the elitist I € Z \ E we perform the following procedure:
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A population of |Z| = 4 individuals create offsprings by interaction. The first offspring is created by choosing
only the fittest memes, i.e. My from I and M, from I;. The remaining offsprings are created applying a
k-tournament selection on memes with the same period. Different values for F after the interaction may occur
from shifts overlapping into different memes.

Figure 4.10: Interaction operator

For each individual I € Z we define a set M’ € M of memes, such that M’
contains the memes with the lowest penalty values (ties are broken randomly). Only
memes in M’ are going to be mutated and locally improved in the current iteration.

Each M € M’ is mutated as follows: A set of shifts S’ € M is chosen at random.
Then for each shift S € S’ its current break pattern is replaced by a pattern selected
randomly out of the set D, of break patterns computed in the beginning. The size of
S’ is a parameter value. Different values for this parameter are evaluated in Section

5.2.7.
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The local search is executed as described in Section 4.5 with set B containing the
set of breaks contained in M’.

4.8.4 Penalty Update

The last step is to update the values for F(M), B(M) and P(M) for each M € M":
We compute F(M) as described in Section 4.1 and update as follows:

F(M),P(M) =0, if B(M) < F(M)
P(M)+1 otherwise

——
= =
g 2
il

The application of each of the methods described in this chapter along with the
evaluation of different parameter settings is described in the next chapter.



EMPIRICAL PARAMETER EVALUATION

In Chapter 4 some parameters emerged that influence the progress and the results of
the algorithm. For instance, a high population size |Z| may provide higher diversity
and different starting points for the local search, but on the other hand consume
more CPU time. For each algorithm we evaluate a set of parameters, for which a
preliminary analysis showed a great impact on the solution qualities. While for
MAR1 we only compare average values, for MAR2 and MAPS the impact of each
parameter is assessed using statistical methods.

5.1 EVALUATION MARI

Parameters for MAR1 were evaluated only on the set of publicly available, randomly
created instances [31] also used by the authors of [6]. We selected a set of instances
for which we executed five runs for each parameter value with a timeout of 9oos.
The final runs were executed with the parameter values that gave the best results on
average solution qualities.

We tested the following parameters:

|Z| Population size
x Selection pressure: Number of individuals performing a tournament

« Crossover/Mutation: Probability an offspring is created by crossover, 1 — a proba-
bility to an offspring is created by mutation

7 Preference for smart crossover over simple crossover
A Search rate: Percentage of population the local search is applied on

u Search intensity: Number of iterations the search continues without finding
improvements

(111,12, 13): Probability for each neighbourhood to be selected in each local search
iteration

|N3|: Size of the shift assignment neighbourhood
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The initial parameters were set after some trial and error preliminary runs. Each
parameter was tested after another and the parameters successively adapted ac-
cording to the result of each experiment. The following were the initial parameter
settings: |Z| =50, xk =3, v = 0.8, « = 0.7, A = 0.15, u = 700, () = (0.3,0.3,0.3),

N3| = 1000.
| T|he following tables describe the average values of each set of runs. The best
values are highlighted.
17l 10 20 30 40 70
Inst.
rani-1 1,052 968 886 891 | 1,048
rani-2 2,738 | 2,608 | 2,437 | 2,430 | 2,578
rani-5 1,430 | 1,402 | 1,200 | 1,163 | 1,306
rani-y 1,185 | 1,146 | 1,016 | 1,009 | 1,149
ran2-1 2,100 | 1,855 | 1,778 | 1,794 | 2,043
Table 5.1: MAR1: Population size
K 2
Inst. 3 Inst. v 1.0 0.0 0.8 0.9
rani-i 792 | 1,084 rani-1 887 | 1,201 | 886 | 938
rani-2 2,500 | 3,052 rani-2 2,657 | 2,758 | 2,437 | 2,508
rani-5 1,086 | 1,629 rani-5 1,268 | 1,374 | 1,200 | 1,193
rant-y 934 | 1,293 rani-7 1,020 | 1,345 | 1,016 | 1,075
rana-1 1,664 | 2,492 ranz-1 1,880 | 2,130 | 1,778 | 1,860

Table 5.2: MAR1: Selection pres-

sure Table 5.3: MAR1: Smart crossover preference 7y



o

Inst. o7 9
rani-1 891 876
rani-2 2,430 | 2,346
rani-5 1,163 | 1,071
rani-y 1,009 | 1,018
ran2-1 1,794 | 1,830

Table 5.4: MAR1:

Crossover probabil-

5.1 EVALUATION MARI1

A
Inst 0.1 | 0.15 0.2
rani-1 809 798 | 1,012
rani-2 2,352 | 2,307 | 2,400
rani-24 | 1,359 | 1,352 | 1,480
rani-28 | 3,077 | 3,042 | 3,020
ran2-4 2,480 | 2,413 | 2,534

Table 5.5: MAR1: Search rate A

ity a
K

Inst 100 500 700 | 1,000

rani-1 959 | 798 | 745 | 855

rani-2 | 2,447 | 2,307 | 2,331 | 2,405

rani-24 | 1,376 | 1,352 | 1,230 | 1,270

rani-28 | 3,594 | 3,042 | 2,964 | 3,082

ran2-4 2,480 | 2,413 | 2,378 | 2,474

Table 5.6: MAR1: Search intensity u
T (.3,.3,.3) | (.8,.15,.05) | (.05,.8,.15) | (.15,.05,.8)

Inst.
rani-1 670 654 675 685
rani-2 2,066 2,174 2,135 2,197
rani-5 844 884 866 872
rani-y 712 799 813 756
ran2-1 1,232 1,398 1,328 1,373

Table 5.7: MAR1: Neighbourhoods 7
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N3]

100 300 | 1000
Inst.
rani-1 631 705 731
rani-2 2,262 | 2,251 | 2,269
rani-5 972 920 981
rani-7 794 784 822
ran2-1 1,224 | 1,454 | 1,523

Table 5.8: MAR1: Size of the shift assignment neighbourhood N3

We finally executed the algorithm with the parameter values that which proved
to be most appropriate according to the experiments. The parameters were set as
follows: |Z| =40, x =2,v=0.8,a =09, A = 0.15, » = 700, 7 = (0.3,0.3,0.3) and
N3 = 300. Results are compared with those of our other algorithms and those from

literature in Table 5.25, Section 5.3.
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5.2 EVALUATION MAR2 AND MAPS
5.2.1 Experimental design

Experiments are conducted to draw conclusions about the impact of different factors
on sets of drawn samples. A factor, according to the terminology of experimental
design, represents a characteristic of the testing environment that is assumed to
have an impact on the samples. In our case, a sample corresponds to the fitness
value of a particular solution and a factor to a parameter. Rardin et al. [28] suggest
different problem instances also to be considered as factors, as different instance
characteristics may also influence the solutions” quality. In this case we deal with
two dimensions of factors, i.e. instances and parameters. However, in our case we
will only look at the parameter dimension.

For each factor, different levels are tested. A factor level corresponds to a concrete
parameter setting or a concrete problem instance.

We ran experiments for each level of each factor against the same set of problem

instances. This method is also known as blocking, as opposed to randomisation [22] .

Lin and Rardin [20] give arguments in favor of blocking compared to randomisation
with respect to analysis of algorithms.

5.2.2 Instances

For the parameter evaluation we selected a set of six different instances among
those presented by Beer at al. [6], which are publicly available in [31]. 20 of them
were retrieved from a real life application without known optimal solutions, and ten
selected among 60 randomly generated instances with known optimal solutions. The
set of instances is the same as the one used by the authors of [6]. Details regarding
the random generation are provided online by the same authors [31] .

The input data C (constraints) and k (number of timeslots) is the same for all
random and real life instances with k = 2016 and C defined as follows:

C; Break positions: d| = d, = 6.
Co Lunch breaks: h =72, ¢=6,11 =42,1, =72.

C3 Duration of work periods: w; = 6, w, = 20.
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C4 Minimum break times: w =10, b = 4.
Cs Break durations: by =2, b, = 12.

All measures are given in timeslots with one timeslot corresponding to five
minutes. k thus represents an entire calendar week.

The real life instances were drawn from a real life problem in the area of su-
pervision personnel. They are characterised by two main factors: Different staffing
requirements and different forecast methods. Staffing requirements vary according
to calendar weeks. A forecast method is a specific way of planning a future shiftplan,
influencing the number of shifts and the shift lengths. As shown in Section 4.2, the
domain size Dg grows exponentially with respect to the shift size |S|, which results
in a smaller search space for instances with smaller shifts.

Table 5.9 gives an overview on the available instances. We renamed them for better
readability.

5.2.3 Parameters

We first determined by trial and error a set of parameters influencing the search
process along with relevant levels. In the course of experimention additional levels,
which seemed worth testing, were added. The relevant set of parameters and levels
is different for each of the algorithms. However, the following parameters have been
evaluated for both algorithms

|Z| Population size
x Number of individuals (MAR2) or memes (MAPS) performing a tournament in
the selection process

i Search intensity: Number of iterations the local search continues without finding
improvements

(111,1m2,13): Probability for each neighbourhood to be selected in each local search
iteration

5.2.4 Testing environment

The algorithms were implemented with Comet [34], which is an object-oriented pro-
gramming language specifically designed for constraint-based local search. Comet
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was also used by the authors of [6], which eases the comparison of results. Since we
were dealing with a stochastic algorithm, we executed ten runs for each experimental
setting. Each run was performed on one core with 2.33Ghz of a QuadCore Intel
Xeon 5345 with three runs being executed simultaneously, i.e. three cores being fully
loaded. The machine provides 48GB of memory.

We benchmarked our machine and the one used by Beer et al. [6] in order to adjust
our timeout and retrieve comparable results. This was done using the benchmark
program provided by the organisers of PATAT 2008 timetabling competition [27],
which determined the time a timetabling algorithm was allowed to run for the
timetabling competition. The result retrieved by the benchmark program for Beer et
al.’s machine was 468 on average for 10 runs and for ours 396. Beer et al. executed
their algorithm for 3600 seconds, consequently our timeout was set to 3046 seconds.
We analyse the solutions our algorithms produce after this timeout under different
parameter settings.

5.2.5 Evaluation method

Different statistical methods exist to investigate the impact of different parameter
settings, analysis of variance (ANOVA) (e.g. in [22]) being a widely used parametric
method among them. This method assumes normal distribution in each of the
groups, which for our case is difficult to test since our groups consist of only
ten samples. We thus decided to use the Kruskal-Wallis test as non-parametric
alternative to ANOVA. This method is also described in [22].

The Kruskal-Wallis method tests the null hypothesis that the samples of differ-
ent groups were drawn from the same population [22] . This corresponds to the
hypothesis that a parameter does not have a significant effect on the results. The
null hypothesis is rejected if p is below an a-level usually chosen < 0.1.

The following tables show average results for each instance and parameter levels.
The rightmost column indicates the level of significance obtained by applying the
Kruskal-Wallis test on groups of ten runs for each level using the following legend:

*** standing for p < 0.001
** standing for p < 0.01

* standing for p < 0.05
. standing for p < 0.1
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The lower p, the higher the significance of the impact of the parameter with respect
to the levels tested. A blank field in the p column means that the null hypothesis
could not be rejected.



Name
2fcoga
2fco4ao3
2fcogao4
2fcogb
3fcoga
3fcogaos
3fcogaog
3si2ji2
4fcoga
4fcoqao3
4fcogqao4
4fcogb
50fcoga
50fco4ao3
50fco4aoy
5ofcogb
51fcoga
51fco4ao3
51fco4ao4
51fcogb
random1-1
randomi-2
randomi-5
randomi-7
random1-9
random1-13
random1-24
random1-28
random2-1

random2-4
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Alt. Name Week Forecast # Shifts

rl-1

rl-2

rl-3

rl-4

rl-5

rl-6

rl-7

rl-8

rl-g9
rl-10
rl-11
rl-12
rl-13
rl-14
rl-15
rl-16
rl-17
rl-18
rl-19
rl-20
rani-1
rani-2
rani-5
rani-y
rani-9
rani-13
rani-24
rani-28
ran2-1

ran2-4

A~ B~ B B W W W W NN NN

u u U U
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51
51

51

51

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a

135
134
137
126
124
123
128
151
124
123
127
125
130
130
131
126
129
129
130
126
137
164
151
137
151
124
137
124
179
162

Table 5.9: Overview on sample instances.

# Slots
15,656
15,778
15,870
14,784
14,740
14,840
14,980
16,324
14,734
14,828
14,940
14,564
15,246
15,372
15,452
14,952
15,106
15,226
15,312
14,830
13,188
15,144
14,208
12,780
14,208
12,288
12,780
11,412

17,208
15,444
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5.2.6  Evaluation of MAR2

We tested the following parameters for this algorithm:

|Z| Population size
v Crossover: Probability to select the fitter meme

« Crossover vs Mutation: Probability to create offspring by crossover, 1 — a proba-
bility to create offspring by mutation

x Selection pressure: Number of individuals performing a tournament
A Search rate, percentage of population the local search is applied on
|L| Length of tabu list

i Search intensity: Number of iterations the local search continues without finding
improvements, this value is multiplied by the number of breaks |B| available
to the local search

(111,72,13): Probability for each neighbourhood to be selected in each local search
iteration

Th population size made a significant difference in most of the instances, with
the value performing best being |Z| = 4. We also tested a population size |Z| =1 to
verify if the genetic operators are relevant to the algorithm.

Interestingly, two of the parameters that were supposed to influence the genetic
operators, i.e. v and « did not have a significant impact. The parameter x defining
the selection pressure did have an impact on the solution qualities, but interestingly,
the best value was ¥ = 1, i.e. the algorithm performed best when no selection
pressure was applied at all.

Other than the parameters for the genetic operators, most of the parameters for
the tabu search, i.e. A, |L|, u and # did have a significant impact the solution qualities.
An interesting outcome is that the use of the tabu list actually worsened the solution
qualities, as for most of the instances tested, best results were obtained with a tabu
list length of 0. The following tables summarise the average results over ten runs for
each parameter and its values.
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2] 1 10 20 4 40 70 p
Inst.
random1-7 1090 | 1114 | 1120 | 1106 | 1061 | 1085
rl-2 3375 | 3425 | 3426 | 3378 | 3426 | 3436
rl-3 3316 | 3370 | 3398 | 3301 | 3381 | 3427 || **
rl-4 2364 | 2420 | 2499 | 2318 | 2585 | 2731 || ***
rl-5 1995 | 2128 | 2089 | 2004 | 2212 | 2282 || ***
rl-6 1983 | 2059 | 2030 | 1927 | 2143 | 2200 || ***

Table 5.10: MAR2: Population size

Inst. U 0.0 0.6 09 || p
randomi1-7 | 1139 | 1120 | 1100

rl-2 3431 | 3426 | 3406

rl-3 3371 | 3398 | 3428

rl-4 2507 | 2499 | 2478

rl-5 2111 | 2089 | 2070

rl-6 2062 | 2030 | 2016

Table 5.11: MAR2: Crossover, preference for fitter memes

Inst. “ 0.5 0.7 09 || p
randomi-7 | 1084 | 1061 | 1057

rl-2 3435 | 3426 | 3425

rl-3 3367 | 3381 | 3358

rl-4 2656 | 2585 | 2639

rl-5 2157 | 2212 | 2176

rl-6 2130 | 2143 | 2157

Table 5.12: MAR2: Crossover vs. Mutation
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3
Inst. t 2 3P
random1-7 | 1023 | 1120 | 1105 || **
rl-2 3315 | 3426 | 3474 || **
rl-3 3296 | 3398 | 3411 || *
rl-4 2353 | 2499 | 2451 || **
rl-5 1963 | 2089 | 2108 || **
rl-6 1935 | 2030 | 2061 || **

Table 5.13: MAR2: Selection pressure

A 0.1 0.2 0.5 0.8
Inst.
random1-7 | 1012 | 920 | 894 | 826
rl-2 3324 | 3346 | 3279 | 3324
rl-3 3269 | 3244 | 3235 | 3283
rl-4 2434 | 2449 | 2468 | 2454
rl-5 2028 | 2010 | 2002 | 1991
rl-6 2005 | 1958 | 2014 | 1938

Table 5.14: MAR2: Search rate A

L] 0 1 2 4
Inst.
randomi-7 767 | 772 | 842 | 885
rl-2 3275 | 3217 | 3241 | 3314
rl-3 3193 | 3213 | 3211 | 3240
rl-4 2328 | 2315 | 2325 | 2440
rl-5 1867 | 1878 | 1892 | 2011
rl-6 1806 | 1835 | 1866 | 1922

Table 5.15: MAR2: Length of tabu list |L|
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Inst # 10 15 2 6 8 p
random1-7 | 854 | 1010 | 999 | 938 885 || ***
rl-2 3357 | 3339 | 3572 | 3367 | 3314 | **
rl-3 3306 | 3339 | 3459 | 3219 | 3240 | **
rl-4 2428 | 2327 | 2831 | 2476 | 2440 || ***
rl-5 1945 | 1978 | 2367 | 2062 | 2011 || ***
rl-6 1897 | 1929 | 2298 | 2034 | 1922 || ***

Table 5.16: MAR2: Search intensity u

Inst 1 2 | nhi | nh2 | nh3 p

randomi-7 | 1624 | 1131 | 1446 | 1446 | 1601 || ***

rl-2 4201 | 3470 | 3486 | 3411 | 3809 || ***
rl-3 4014 | 3484 | 3412 | 3395 | 3706 || ***
rl-4 3600 | 2771 | 2734 | 2658 | 3161 || ***
rl-5 3158 | 2302 | 2294 | 2247 | 2688 || ***
rl-6 3134 | 2296 | 2250 | 2148 | 2597 || ***

Table 5.17: MAR2: Neighbourhoods 7

The final runs for all real-life and randomly created instances were executed with
the following parameters: |Z| =4, ¥y =09,k =1, 24 =09,A =08, |L| =0, » = 10
and # = (0.3,0.6,0.1). The results of those runs are compared to results from our
other algorithms and results from literature in Section 5.3.
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5.2.7 Evaluation MAPS

The following parameters were evaluated for this algorithm:

|Z| Population size

A Defines number of memes | M’| being mutated and improved for each individual:
max(1,|M|-A),0<c <1

o Mutation weight, number of shifts being mutated: max(1, |S'|-¢),0 <o <1
x Selection: Number of memes performing a tournament in the interaction operator

i Search intensity: Number of iterations the local search continues without finding
improvements, this value is multiplied by the number of breaks |B| available
to the local search

(111,172, 73): Probability for each neighbourhood to be selected in each local search
iteration

This algorithm performs best with a small population size. We also tested a
population size of |Z| = 1 to make sure that the population based approach is
indeed necessary to obtain good solutions. With |Z| = 1 no selection and no
interaction is performed and thus the algorithm is reduced to a local search with
mutation acting as perturbation. Since mutation may worsen a solution during the
progress of the algorithm, for |Z| = 1 the best obtained solution is kept in memory.
The results in Table 5.18 show clearly that there is indeed the need for a population
based approach, as the results with runs applying local search only, i.e. with |Z| =1,
show the worst results.

The mutation and search rate A determining |M’|, the number of memes being
improved on each individual led to the best results when kept low. On many
instances, A = 0.05 leads to only one memes being mutated and searched.

The mutation weight ¢ also worked well with a low value. ¢ determines the
percentage of shifts which are assigned a new break pattern during a mutation.

Similar to the previous algorithms, the value of ¥ did not have a major impact.

As in MAR2, the local search intensity p was set relative to the number of
breaks |B| taking part in the search. For this algorithm, larger values for y probably
performed better than for MAR2, because |B| is much smaller. While in MAR2, B
contained the complete set of break in the solution, MAPS considers only a subset
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of all breaks, namely those contained in M’, which, according to the low value for
A are only a small subset.

We tested some more neighbourhood combinations than for MARz2. In Table 5.23
it can be seen very clearly, that all runs where N3 participated gave worse results
than those where we used only A, and N;. The best performing combination was
m1 = 0.8 and 1, = 0.2, that is, N; chosen with a probability of 80% and N, with a
probability of 20%.

17l 1 10 20 4 6 p
Instance
random1-7 1631 | 667 | 674 | 715 669 || ***
rl-1 3427 | 2969 | 3133 | 2957 | 2967 || ***
rl-16 2530 | 2070 | 2237 | 2012 | 2008 o
rl-19 2558 | 2120 | 2280 | 2068 | 2084 || ***
rl-4 2450 | 2018 | 2114 | 1966 | 1957 || ***
rl-7 2105 | 1786 | 1906 | 1727 | 1736 || **

Table 5.18: MAPS: Population Size

A

Instance 0.05 0.1 0.2 0.3 0.5 [4
random1-7 695 | 694 | 702 | 711 | 754
rl-1 2982 | 2992 | 3033 | 3121 | 3223 || ***
rl-16 1950 | 2027 | 2048 | 2217 | 2263 || ***
rl-19 2098 | 2144 | 2155 | 2196 | 2311 || ***
rl-4 1986 | 1985 | 2038 | 2096 | 2165 || ***
rl-7 1750 | 1779 | 1819 | 1830 | 1929 || ***

Table 5.19: MAPS: Mutation and search rate
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Instance 71 001 0.05 0.1 0.3 o5 || p
random1-7 617 | 624 | 674 | 667 | 657
rl-1 2047 | 2910 | 2924 | 2905 | 2971
rl-16 1915 | 1886 | 1961 | 1974 | 1999 || **
rl-19 2041 | 1965 | 2077 | 2022 | 2043 *
rl-4 1904 | 1905 | 1953 | 1949 | 1975 || **
rl-7 1688 | 1670 | 1708 | 1702 | 1730
Table 5.20: MAPS: Mutation weight
K
Inst. ! 2P
randomi1-7 | 676 715
rl-1 2975 | 2957
rl-16 1972 | 2012
rl-19 2019 | 2068 || *
rl-4 1974 | 1966
rl-7 1737 | 1727
Table 5.21: MAPS: Selection «
# 10 20 30 40
Instance
randomzi-y 669 | 618 | 630 | 613
rl-1 2987 | 2910 | 2937 | 2921
rl-16 2003 | 1891 | 1917 | 1927
rl-19 2056 | 2016 | 2026 | 2004
rl4 1968 | 1933 | 1916 | 1911
rl-7 1732 | 1677 | 1699 | 1699

Table 5.22: MAPS: Search intensity
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For the final runs we used the following settings: |Z| = 4, A = 0.05, ¢ = 0.05,
=20,k =1and 5 = (0.8,0.2,0.0). The results of those runs are compared with
results from our other algorithms and results from literature in Section 5.3.

5.3 COMPARISON OF RESULTS

The following tables compare the results of the final runs for MAR1, MAR2 and
MAPS with the best values provided by literature [6]. Each column indicates the best
and average results as well as the standard deviation ¢ over 10 runs. The timeout
has been normalised as described in Section 5.2.4 to make the results comparable.

The table includes two result columns from [6]. Each represents values retrieved
by a min-conflicts heuristic. They differ in the initialisation and the definition of
hard- and soft constraints. While the values in the first column (“STP init”) were
retrieved by defining all constraints C as hard constraints, thus never allowing any
violation and using the small temporal problem model [15], the values in the second
column (“Random init”) define C as soft constraints and resolve them along with
optimising the staffing requirements. In the “Random init” version, violations in
C are included in the objective function. According to the authors, over 20 real life
instances no significant difference between the two approaches could be found.

Compared within our algorithms, MAR1 performs worst on most of the random
instances, except for one. Since the main difference between MAR1 and MAR2 is
the memetic representation, we conclude that Memetic Representation 2 indeed
outperforms Memetic Representation 1. Additionally, the standard deviation ¢ is
lower for the results retrieved with Memetic Representation 2, which makes MAR2
and MAPS more reliable methods.

The best results, however, were returned by MAPS. Using this algorithm, we
managed to set new upper bounds for 18 out of 20 real life instances. Also on the
random instances this algorithm returns better results than both the algorithms from
literature and the algorithms from this work. Additionally, in most instances the
solutions returned by MAPS have a lower standard deviation than any of the other
algorithms.

Details on the solutions are presented in Table 5.24 showing best and average
values as well as the standard deviation over ten runs for each real life instance for
the algorithms presented by [6], MAR2 and MAPS. Solutions for random instances
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are presented in Table 5.25 comparing the algorithm presented by [6], MAR1, MAR2
and MAPS.
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CONCLUSIONS AND FUTURE WORK

In this thesis we proposed different memetic approaches to optimise Bsp. We intro-
duced two different representations upon which we built three different memetic
algorithms. For each method we designed a set of genetic operators. As local im-
provement we applied in all approaches the same local search heuristic, for which
we proposed three different neighbourhoods. Further, we introduced a concept to
avoid local optima based on penalty values for parts of solutions which are not
improved during too many iterations.

We justified the choice of a metaheuristic to optimise Bsr by presenting an NP-
completeness proof for this problem under the condition that the input contains
break patterns explicitly instead of defining them by a set of constraints.

For each algorithm we conducted a set of experiments on different parameter
settings and then compared the algorithms with their best settings. The impact of
each parameter was assessed with statistical methods. Important outcomes of these
parameter evaluations are the following:

¢ Using genetic operators combined with local search returns better results than
using only local search.

¢ Applying the local search either only on some individuals or only on small
parts of each individual significantly improves the qualities of the solutions
compared to applying the local search on all and entire individuals.

e Focusing on neighbourhoods N; and N; returns better solutions than using
only one neighbourhood. The largest neighbourhood performs worst, the
smallest best.

* The use of a penalty system along with focusing the local search only on
memes that are not likely to be stuck in local optima significantly improves
the qualities of the solutions.

The results of the algorithm performing best according to our experiments were
compared to the results in literature according to 30 publicly available benchmarks.

81



82

CONCLUSIONS AND FUTURE WORK

Our algorithm returned improved results for 28 out of 30 instances. To the best of
our knowledge, our results are the new upper bounds for the improved instances.

We leave the computational complexity of Bsp with break patterns implicitly given
by a set of constraints as open issue. As mentioned in Section 2.3, to the best of
our knowledge, it is still unclear whether solving a shift scheduling problem with a
large number of breaks or approaching the problem into two phases, namely a shift
scheduling and a break scheduling phase, is more effective in practice. Future work
could include an investigation on the performance of metaheuristics on these two
different optimisation approaches.

Another interesting topic that was not addressed in this work is the question on
how the algorithms perform in very long runs, e.g. up to ten hours. The execution
of the algorithm could also be accelerated by parallelization.
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